首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the rapid thermal annealing (RTA) in vacuum at 1000 °C on the leakage current characteristics and conduction mechanisms in thermal Ta2O5 (7-40 nm) on Si has been studied. It was established that the effect of RTA depends on both the initial parameters of the films (defined by the oxidation temperature and film thickness) and annealing time (15-60 s). The RTA tends to change the distribution and the density of the traps in stack, and this reflects on the dielectric and leakage properties. The thinner the film and the poorer the oxidation, the more susceptible the layer to heating. The short (15 s) annealing is effective in improving the leakage characteristics of poorly oxidized samples. The RTA effect, however, is rather deleterious than beneficial, for the thinner layers with good oxygen stoichiometry. RTA modifies the conduction mechanism of Ta2O5 films only in the high-field region. The annealing time has strong impact on the appearance of a certain type of reactions upon annealing resulting to variation of the ratio between donors and traps into Ta2O5, causing different degree of compensation, and consequently to domination of one of the two mechanisms at high fields (Schottky emission or Poole-Frenkel effect). Trends associated with simultaneous action of annealing and generation of traps during RTA processing, and respectively the domination of one of them, are discussed.  相似文献   

2.
The as-deposited and annealed radio frequency reactive magnetron sputtered tantalum oxide (Ta2O5) films were characterized by studying the chemical binding configuration, structural and electrical properties. X-ray photoelectron spectroscopy and X-ray diffraction analysis of the films elucidate that the film annealed at 673 K was stoichiometric with orthorhombic β-phase Ta2O5. The dielectric constant values of the tantalum oxide capacitors with the sandwich structure of Al/Ta2O5/Si were in the range from 14 to 26 depending on the post-deposition annealing temperature. The leakage current density was <20 nA cm?2 at the gate bias voltage of 0.04 MV/cm for the annealed films. The electrical conduction mechanism observed in the films was Poole–Frenkel.  相似文献   

3.
Stress-induced leakage currents (SILCs) in thin Ta2O5 films after short- and long-term constant current stress (CCS) at both gate polarities at different levels of injected current were investigated. The behavior of the SILCs and the change of quasistatic CV characteristics after the degradation confirmed the variations of gate voltage with time during CCS necessary to maintain the injected current density through the oxide.The conduction mechanisms were also investigated. Initially, normal Poole–Frenkel (PF) mechanism dominates in the oxide at medium fields (0.4– 1.7 MV/cm) independently of the deposition temperature or annealing steps. After the degradation modified PF with different compensation factors appears. After long-term degradation conduction mechanism goes back to PF.  相似文献   

4.
Electrical properties of mixed HfO2-Ta2O5 films (10;15 nm) deposited by rf sputtering on Si have been studied from the view point of their applications as high-k layers, by standard capacitance-voltage and temperature dependent current-voltage characteristics. The effect of HfO2 addition to the Ta2O5 is thickness dependent and the thicker layers exhibit advantages over the pure Ta2O5 (higher dielectric constant, enhanced charge storage density and improved interface quality). The process of HfO2 and Ta2O5 mixing introduces negative oxide charge, tends to creates shallow bulk traps and modifies the dominant conduction mechanisms in the stack capacitors as compared to the Ta2O5-based one (a contribution of tunneling processes through traps located below the conduction band of mixed layers to the leakage current in the HfO2-Ta2O5 stacks is observed). The traps involved in both Poole-Frenkel and tunneling processes are identified.  相似文献   

5.
In this study, the structural and electrical properties of amorphous and crystalline Ta2O5 thin films deposited on p-type Si by low pressure metalorganic chemical vapour deposition from a Ta(OC2H5)5 source have been investigated. The as-deposited layers are amorphous, whereas crystalline Ta2O5 (hexagonal phase) was obtained after post-deposition O2-annealing at 800°C. Physico-chemical analysis of our layers shows that the O2-treatment leads to the growth of a thin (1 nm) interfacial SiO2 layer between Ta2O5 and Si but, contrary to other studies, was not sufficient to reduce the level of carbon and hydrogen contaminants. Crystalline Ta2O5 shows better leakage current properties than amorphous Ta2O5. The conduction mechanism in amorphous Ta2O5 is clearly attributed to the Poole–Frenkel effect with a barrier height separating the traps from the conduction band of 0.8 eV. For crystalline Ta2O5, the situation remains unclear since no simple law can be invoked due to the presence of the SiO2 interlayer: a double conduction process based on a tunnelling effect in SiO2 followed by a trap-modulated mechanism in Ta2O5 may be invoked. From capacitance–voltage measurements, the permittivity was found to be 25 for amorphous samples, but values ranging from 56 to 59 were found for crystalline layers, suggesting a high anisotropic character.  相似文献   

6.
Tantalum pentoxide thin layers (10–100 nm) obtained by thermal oxidation of rf sputtered Ta films on Si have been investigated with respect of their dielectric, structural and electric properties. It is established that stoichiometric Ta2O5 detected at the surface of the layers is reduced to tantalum suboxides in their depth. The oxide parameters are discussed in terms of a presence of an unavoidable ultrathin SiO2 between Si and Ta2O5 and bond defects in both the oxide and the interface transition region. Conditions which guarantee obtaining high quality tantalum oxide with a dielectric constant of 32–35 and a leakage current less than 10−7–10−8 A/cm2 at 1.5 V (SiO2 equivalent thickness of 2.5–3 nm) are established. These specifications make the layers obtained suitable alternative to SiO2 for high density DRAMs application.  相似文献   

7.
Titanium dioxide films have been deposited using DC magnetron sputtering technique onto well-cleaned p-silicon substrates at an oxygen partial pressure of 7×10–5 mbar and at a sputtering pressure (Ar+O2) of 1×10–3 mbar. The deposited films were calcinated at 673 and 773 K. The composition of the films as analyzed using Auger electron spectroscopy reveals the stoichiometry with an O and Ti ratio 2.08. The influence of post-deposition annealing at 673 and 773 K on the structural properties of the titanium dioxide thin films have been studied using XRD and Raman scattering. The structure of the films deposited at the ambient was found to be amorphous and the films annealed at temperature 673 K and above were crystalline with anatase structure. The lattice constants, grain size, microstrain and the dislocation density of the film are calculated and correlated with annealing temperature. The Raman scattering study was performed on the as-deposited and annealed samples and the existence of Raman active modes A1g, B1g and Eg corresponding to the Raman shifts are studied and reported. The improvement of crystallinity of the TiO2 films was also studied using Raman scattering studies.  相似文献   

8.
The paper presents results of the effect of microwave irradiation at room temperature on the properties of thin layers of tantalum pentoxide deposited on Si by rf sputtering. Electrical characterization is performed in conjunction with Auger electron spectroscopy and atomic force microscopy. Among exposure times used (1; 5; 10 s), treatment of about 5 s shows the best promise as an annealing step––an improvement of number of parameters of the system Ta2O5–Si is established (dielectric constant and surface morphology; stoichiometry and microstructure of both the bulk oxide and the interfacial transition region; electrical characteristics in terms of oxide charge density, leakage current and breakdown fields). At the same time the microwave irradiation is not accompanied by crystalization effects in Ta2O5 and/or additional oxidation of Si substrate. It is concluded that the short-time microwave irradiation can be used as an annealing process for Ta2O5–Si microstructures and it has a potential to replace the high-temperature annealing processes for high-k insulators.  相似文献   

9.
The stress-induced leakage current in Hf-doped Ta2O5 layers (7; 10 nm) under constant voltage stress at gate injection was investigated in order to assess the mechanisms of conduction, the traps involved and the effect of Hf doping. The amount of Hf is found to affect the conduction mechanisms, the temperature dependence of the leakage current and the current response to the stress. A significant leakage current increase is observed only when the stress voltage and/or stress time exceed the corresponding threshold values, where the charge trapping at the pre-existing traps dominates below and defect generation above these threshold values. The energy levels of the traps responsible for the current transport are estimated. The stress effect on dominant conduction mechanisms appears quite weak, and the nature of the traps controlling the current transport before and after the stress seems to be nearly identical. The results indicate that the constant voltage stress affects the pre-existing traps in Hf-doped Ta2O5 and modifies their parameters, but there is no evidence for stress-induced generation of traps with completely new nature different from oxygen-vacancy related defects.  相似文献   

10.
The degradation of Ta2O5-based (10 nm) stacked capacitors with different top electrodes, (Al, W, Au) under constant current stress has been investigated. The variation of electrical characteristics after the stress is addressed to gate-induced defects rather than to poor-oxidation related defects. The main wearout parameter in Ta2O5 stacks is bulk-related and a generation only of bulk traps giving rise to oxide charge is observed. The post-stress current–voltage curves reveal that stress-induced leakage current (SILC) mode occurs in all capacitors and the characteristics of pre-existing traps define the stress response. The results are discussed in terms of simultaneous action of two competing processes: negative charge trapping in pre-existing electron traps and stress-induced positive charge generation, and the domination of one of them in dependence on both the stress level and the gate used. The charge build-up and the trapping/detrapping processes modify the dominant conduction mechanism and the gate-induced defects are precursors for device degradation. It is concluded that the impact of the metal gate on the ultimate reliability of high-k stacked capacitors should be strongly considered.  相似文献   

11.
Lightly Al-doped Ta2O5 films (10;15 nm) obtained by rf sputtering have been studied with respect to their dielectric and electrical properties. The formed metal-high-k dielectric-semiconductor capacitors have been characterized by capacitance-voltage and temperature-dependent current-voltage characteristics. It was established that the introduction of small amount (5 at.%) Al into the matrix of Ta2O5 improves dielectric constant, introduces negative oxide charge, suppresses deep oxygen-vacancy centers in Ta2O5 but creates shallow traps and changes the dominant conduction mechanism in the stacks. The doping produces more leaky films at room temperature and lower current at high temperature as compared to the case of pure Ta2O5. It is concluded that the strong contribution of tunneling processes through shallow traps in the conductivity of doped films could explain the observed current degradation at room temperature and its improved temperature stability at high temperatures. The energy levels of the traps responsible for the current transport are estimated.  相似文献   

12.
The change in the thickness and chemical states of the interfacial layer and the related electrical properties in Ta2O5 films with different annealing temperatures were investigated. The high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the 700 °C-annealed Ta2O5 film remained to be amorphous and had the thinnest interfacial layer which was caused by Ta-silicate decomposition to Ta2O5 and SiO2. In addition, the electrical properties were improved after annealing treatments. Our results suggest that an annealing treatment at 700 °C results in the highest capacitance and the lowest leakage current in Ta2O5 films due to the thinnest interfacial layer and non-crystallization.  相似文献   

13.
We report electrical characteristics of multilayer TiO2–T2O5 based MIS structures obtained by simple electron beam evaporation and annealed in an O2 environment. We describe parameter dependence on annealing conditions and demonstrate an equivalent SiO2 thickness of 3 nm with a leakage current density of 10−7 A/cm2 at an electric field of 106 V/cm.  相似文献   

14.
We report measured evolutions of the optical band gap, refractive index and relative dielectric constant of TiO2 films obtained by electron beam gun evaporation and annealed in an oxygen environment. A negative shift of the flat band voltage with increasing annealing temperatures, for any film thickness, is observed. A dramatic reduction of the leakage current by about four orders of magnitude to 5×10−6 A cm−2 (at 1 MV cm−1) after 700°C and 60 min annealing is found for films thinner than 15 nm. The basic carrier transport mechanisms at different ranges of applied voltage such as hopping, space charge limited current and Fowler–Nordheim is established. An equivalent SiO2 thickness in order of 3.5 nm is demonstrated.  相似文献   

15.
Tantalum pentoxide (Ta2O5) deposited by pulsed DC magnetron sputtering technique as the gate dielectric for 4H-SiC based metal-insulator-semiconductor (MIS) structure has been investigated. A rectifying current-voltage characteristic was observed, with the injection of current occurred when a positive DC bias was applied to the gate electrode with respect to the n type 4H-SiC substrate. This undesirable behavior is attributed to the relatively small band gap of Ta2O5 of around 4.3 eV, resulting in a small band offset between the 4H-SiC and Ta2O5. To overcome this problem, a thin thermal silicon oxide layer was introduced between Ta2O5 and 4H-SiC. This has substantially reduced the leakage current through the MIS structure. Further improvement was obtained by annealing the Ta2O5 at 900 °C in oxygen. The annealing has also reduced the effective charge in the dielectric film, as deduced from high frequency C-V measurements of the Ta2O5/SiO2/4H-SiC capacitors.  相似文献   

16.
Tantalum pentoxide films (13–260 nm) on p-type Si have been prepared by thermal oxidation at 673–873 K of rf sputtered Ta films and have been studied using Al–Ta2O5–Si capacitors. Both dielectric constant and refractive index were found to depend on the thickness of the Ta2O5 layers. Layers with a dielectric constant of 25–32 were obtained. A decreasing trend in the leakage current was found upon increasing oxidation temperature from 673 to 873 K. Leakage current density of (10−8 to 3×10−7) A cm−2 at 1 MV cm−1 effective field was achieved.  相似文献   

17.
The effect of the oxidation temperature (673-873 K) on the microstructural and electrical properties of thermal Ta2O5 thin films on Si has been studied. Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that the films are non-stoichiometric in the depth; an interfacial transition layer between tantalum oxide and Si substrate, containing presumably SiO2 was detected. It has been found by X-ray diffraction that the amorphous state of Ta2O5 depends on both the oxidation temperature and the thickness of the films—the combination of high oxidation temperature (>823 K) and thickness smaller than 50 nm is critical for the appearance of a crystal phase. The Ta2O5 layers crystallize to the monoclinic phase and the temperature of the phase transition is between 773 and 823 K for the thinner layers (<50 nm) and very close to 873 K for the thicker ones. The electrical characterization (current/voltage; capacitance/voltage) reveals that the optimal oxidation temperature for achieving the highest dielectric constant (∼32) and the lowest leakage current (10−8 A/cm2 at 1 MV/cm applied field) is 873 K. The results imply that the poor oxidation related defects are rather the dominant factor in the leakage current than the crystallization effects.  相似文献   

18.
Effects of excess Bi concentration, buffered Bi2O3 layer, and Ta doping on the orientation and ferroelectricity of chemical-solution-deposited (CSD) Bi3.25La0.75Ti3O12 (BLT) films on Pt/SiO2/Si(100) were studied. The optimum concentration of excess Bi added to the BLT films to achieve a larger remanent polarization (2Pr) was 10 mol.%. The buffered Bi2O3 layers could reduce the temperature for c-axis-oriented growth of BLT films from 850°C to 700°C. However, two-step annealing, i.e., first annealed at 650°C and then annealed at a temperature of 700–850°C, could effectively suppress the c-axis-oriented growth and thus improve the 2Pr of BLT films. The improvement of the 2Pr of BLT films can be explained in terms of the large polarization along the a-axis orientation and buffered Bi2O3 layers, which compensate the BLT films for Bi evaporation during annealing. The Ta doping can induce two contrary effects on the 2Pr of BLT films. For the (Bi3.25La0.75)(Ti3−xTax)O12 (BLTTx) films with x=0.005, the effect of a decrease of oxygen vacancies would be dominant, resulting in the improvement of 2Pr. Because the Ta concentration (x) in the BLTTx films exceeds 0.01, the effect of a decrease of grain size would become dominant, resulting in the degradation of 2Pr.  相似文献   

19.
Dispersion analysis was performed on low pressure chemically vapor deposited (LPCVD) SiO2 films grown from SiH4 + O2 at 425 °C. The transmission spectra were analyzed using four Lorentz oscillators within the range 900–1400 cm−1. It was found that the distribution of the SiOSi angles is a superposition of two Gaussians; one corresponding to bridges located in the bulk of the film and one corresponding to bridges located close to the boundaries of the film namely the interfaces of the films and the grain boundaries. The ratio between the bulk like SiOSi bridges over the boundary bridges was found equal to 0.61:1 indicating that films grown from SiH4 + O2 contain a higher number of boundary SiOSi bridges relative to those located in the bulk of the film. After annealing for 30 min at temperatures in the range from 550 to 950 °C, films were found to have a lower thickness. The calculated ratio of the two distributions after annealing have shown a clear reduction in the concentration of the boundary bridges as the temperature of annealing increases, in advance of the bridges located in the bulk of the film. For the film annealed at 950 °C for 30 min the ratio was found equal to 4.0:1 which is the same to that of thermally grown films at the same temperature.  相似文献   

20.
In this article, the conduction mechanisms of metal-oxide-semiconductor with vacuum annealed Lanthana (La2O3) oxide film are investigated. Lanthana films with thicknesses of 3.5, 4.7, and 11 nm were deposited by E-beam evaporation on n-Si (100), and annealed at various temperatures (300-500 °C) in ultra-high vacuum (10−10-10−9 Torr) for 90 min. From the measurement of spectroscopic ellipsometry, it is found that film thickness is increased with annealing temperature, which would be cause of flat-band voltage shift (ΔVFB) due to the growth of interfacial layer. From the capacitance measurement, it is found that ΔVFB of the film is reduced by post-deposition anneal (PDA) compared to that of as-deposited film, but increase again at high temperature annealing, especially in the case of thin film (3.5 nm). From the applied voltage and temperature dependence of the leakage current of the film, with different gate electrode materials (Ag, Al, and Pt), it is shown that the leakage currents are associated with ohmic and Poole-Frenkel (P-F) conductions when flat-band voltage (VFB) is less than zero, and ohmic and Space-Charge-Limited Current (SCLC) conductions when VFB is greater than zero. The dielectric constants obtained from P-F conduction for Al gate electrode case is found to be 11.6, which is consistent with the C-V result 11.9. Barrier height of trap potential well is found to be 0.24 eV from P-F conduction. Based on SCLC theory, leakage currents of 3.5 and 11 nm films with different PDA temperatures are explained in terms of oxide trap density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号