首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We propose a new space-time coding scheme for the quasi-static multiple-antenna channel with perfect channel state information at the receiver and no channel state information at the transmitter. In our scheme, codewords produced by a trellis encoder are formatted into space-time codeword arrays such that decoding can be implemented efficiently by minimum mean-square error (MMSE) decision-feedback interference mitigation coupled with Viterbi decoding, through the use of per-survivor processing. We discuss the code design for the new scheme, and show that finding codes with optimal diversity is much easier than for conventional trellis space-time codes (STCs). We provide an upper bound on the word-error rate (WER) of our scheme which is both accurate and easy to evaluate. Then, we find upper and lower bounds on the information outage probability with discrete independent and identically distributed (i.i.d). inputs (as opposed to Gaussian inputs, as in most previous works) and we show that the MMSE front-end yields a large advantage over the whitened matched filter (i.e., zero-forcing) front-end. Finally, we provide a comprehensive performance/complexity comparison of our scheme with coded vertical Bell Labs layered space-time (V-BLAST) architecture and with the recently proposed threaded space-time codes. We also discuss the concatenation of our scheme with block space-time precoders, such as the linear dispersion codes.  相似文献   

2.
We explore code-division multiple-access (CDMA) systems with multiple transmit and receive antennas combined with space-time trellis codes over a frequency-selective channel. The conventional noniterative multiuser minimum mean square error (NIMU-mmse) detector is generalized to accommodate multiple antennas and multiple paths and then extended to include the turbo principle in an iterative fashion, allowing interference regeneration and cancellation at the receiver. Iterative multiuser mmse (IMU-mmse) receivers employing chip- and symbol-level detectors are derived and their equivalence is demonstrated. Computer simulations show that the proposed iterative mmse equalizers completely remove the interference of the other users in a multiantenna environment; they provide a significant improvement over the NIMU-mmse detector and they effectively achieve the single-user performance, even in a fully loaded system. Two suboptimal iterative mmse detectors, which allow a computational complexity reduction of up to three orders of magnitude compared to the IMU-mmse and still outperform the NIMU-mmse detector, are introduced. The proposed iterative mmse equalizers are analyzed and supported by extensive computer simulations.  相似文献   

3.
Space-time convolutional codes, that provide maximum diversity and coding gain, are produced for cases with PSK modulation and various numbers of states and antennas. The codes are found using a new approach introduced previously in a companion paper. The new approach provides an efficient method that allows a search for optimum codes for many practical problems. The new approach also provides a simple method for augmenting the criteria of maximum diversity and coding gain with a new measure which is shown to be extremely useful for evaluating code performance without extensive simulations. To validate the approach, an extensive set of simulation results are presented comparing the codes designed here to many other previously proposed space-time convolutional codes. The comparisons, given in terms of frame error rate (FER), indicate that our new method provides codes which yield excellent performance. The approach is especially useful for finding a handful of good codes. Selection among these codes can be made with a limited number of simulations for FER.  相似文献   

4.
In this paper, an approximate maximum-likelihood (ML) receiver for differential space-time block codes is investigated. The receiver is derived from the ML criterion and is shown to mitigate error floor occurring in a conventional differential receiver very well. Because the receiver employs knowledges of signal-to-noise ratio (SNR) and fading rate, we study mismatched cases when these parameters are not accurate. It is shown that the receiver is more sensitive to the mismatched parameters when the fading rate is high. Then, a union bound on the bit error probability is derived. The bounds show good agreement with the simulation results at high fading rate and at high SNR. Finally, a modified receiver, denoted as multistage receiver, is proposed to compensate the so-called intrablock interference caused by the time-varying characteristic of the channel within a transmission block. The multistage receiver offers further reduction of error floor of about half order of magnitude as compared with an approximate ML receiver.  相似文献   

5.
Multicarrier code-division multiple access (MC-CDMA) is a promising multiplexing technique for future mobile radio systems, which require multirate transmission capability to efficiently support various services with wide range of data rates. In this paper, a generic performance analysis for the multicode and variable spreading factor multirate schemes in MC-CDMA is presented. Results comparing and pointing out notable differences in the error rate performance of these multirate schemes in conjunction with six different combining techniques are presented for the synchronous downlink and both the synchronous and asynchronous uplink. Furthermore, the analysis takes into account also the intersymbol interference caused by the multipath delay components exceeding the guard interval, which is commonly omitted in the literature.  相似文献   

6.
Decision-feedback differential detection (DFDD) of differential phase-shift keying (DPSK) and differential unitary space-time modulation (DUST) in Rayleigh-fading channels exhibits significant performance improvement over standard single-symbol maximum-likelihood detection. However, knowledge of channel fading correlation and signal-to-noise ratio (SNR) is required at the receiver to compute the feedback coefficients used in DFDD. In this letter, we investigate the robustness of the DFDD to imperfect knowledge of the feedback coefficients by modeling the mismatch between estimated feedback coefficients and ideal coefficients in terms of mismatch between the estimated values of fading correlation and SNR and the true values. Under the assumption of a block-fading channel when nondiagonal DUST constellations are used and a continuous fading channel otherwise, we derive exact and Chernoff bound expressions for pair-wise word-error probability and then use them to approximate the bit-error rate (BER), finding close agreement with simulation results. The relationships between BER performance and various system parameters, e.g., DFDD length and Doppler mismatch, are also explored. Furthermore, the existence of an error floor in the BER-vs-SNR curve is investigated for the infinite-length DFDD. For the special case of Jakes' fading model, it is shown that the error floor can be removed completely even when the Doppler spread is over-estimated.  相似文献   

7.
8.
This paper presents a saddle point approximation (SAP) method to compute the pairwise error probability (PEP) of trellis-coded modulation (TCM) schemes over Rician fading channels. The approximation is applicable under several conditions, such as finite and ideal interleaving, ideal coherent and pilot-tone aided detection, and differential detection. The accuracy of this approximation is demonstrated by comparison to the results of numerical integration. When ideal interleaving is assumed, an asymptotic approximation for the PEP of ideal coherent, pilot-tone aided or differentially detected TCM is derived. This asymptotic approximation of the PEP is in a product form and much tighter than the ordinary Chernoff bound on the PEP. Also, based on the SAP, the effect of finite interleaving depth on the error performance of TCM schemes over Rician and shadowed Rician channels is studied  相似文献   

9.
We consider the asymptotic behavior of the capacity of multiple-antenna Rayleigh-fading channels in the limit as the transmit and receive arrays become large. We show that the capacity converges in distribution to a Gaussian random variable, and give closed-form formulas for its mean and variance. These results enable us to derive the first asymptotic formula for outage rates, as well as a sharper estimate of the error in previously reported asymptotic formulas for ergodic capacity. Although these formulas are asymptotic, we show by simulation that they are often quite accurate, even for relatively small arrays.  相似文献   

10.
The capacity of discrete-time memoryless Rayleigh-fading channels   总被引:1,自引:0,他引:1  
We consider transmission over a discrete-time Rayleigh fading channel, in which successive symbols face independent fading, and where neither the transmitter nor the receiver has channel state information. Subject to an average power constraint, we study the capacity-achieving distribution of this channel and prove it to be discrete with a finite number of mass points, one of them located at the origin. We numerically compute the capacity and the corresponding optimal distribution as a function of the signal-to-noise ratio (SNR). The behavior of the channel at low SNR is studied and finally a comparison is drawn with the ideal additive white Gaussian noise channel  相似文献   

11.
The recent literature has thoroughly treated two-branch selection combining (SC) over correlated Rayleigh fading and three-branch SC over exponentially correlated Rayleigh fading. However, a long-standing open problem involves the three-branch SC performance over arbitrarily correlated Rayleigh fading. We solve this problem completely by deriving new infinite series expressions for the cumulative distribution function, the probability density function, and the moment generating function (mgf) of the three-branch SC output signal-to-noise ratio (SNR). The output mgf can be used to derive the average symbol-error rate for any two-dimensional digital modulations. The outage probability and the higher moments of the SC output SNR are also derived. These analytical results are canonical, in that the three-branch SC performance is now completely solved for arbitrary correlation. Some previous results are shown to be special cases of our new results.  相似文献   

12.
In this paper, we analyze the performance of spacetime codes and propose a distance spectrum computation method in fast Rayleigh fading channels. We first derive a new FER upper bound using the union bound and the PEP upper bound in the fast fading environment. The derived FER upper bound is very accurate, requires only the distance spectrum of the spacetime code, and takes a closed-form expression. Then we propose a distance spectrum computation method of space-time codes in fast fading channels, which exploits the symmetric property of the error state diagram in space-time trellis coded MPSK modulation to reduce the computation complexity. Numerical results illustrate that the derived FER bound is tight enough to estimate the performance of space-time codes in fast fading channels with sufficient accuracy.  相似文献   

13.
The paper addresses the analysis of multidimensional trellis-coded M-ary phase shift keying (MPSK) modulation over a Rice-lognormal fading channel model, applicable to a variety of environments and to both terrestrial and satellite mobile communications. Bounds to the bit error probability are derived and applied to the analysis of a few selected trellis-coded modulation (TCM) schemes. The results, confirmed by simulation, show that on the Rice channel there exists a threshold in bit energy-to-noise density ratio above which the effective code length is the dominant parameter, while the free distance is dominating below. However, the influence of both parameters is mitigated when shadowing is present  相似文献   

14.
We analyze the performance of space-time trellis codes over shadowed Rician fading channels. The shadowed Rician channel is a generalization of the Rician model, where the line-of-sight path is subjected to a lognormal transformation due to foliage attenuation, also referred to as shadowing. Using the moment generating function method, we derive an exact expression for the pairwise error probability (PEP) of space-time trellis coded systems operating over this channel. The asymptotic analysis of PEP shows that the design criteria of space-time trellis codes proposed for Rayleigh fading still hold when used over shadowed Rician channels. We also present simulation results for bit-error rate performance under various degrees of shadowing.  相似文献   

15.
This article presents a theoretical analysis (based on tight upper bounds on the error probability) of quantization loss with integer metrics used for convolutional decoding in the Rayleigh-fading channel. Optimum configurations with respect to the generalized cutoff rate criterion are established for 2-bit, 3-bit and 4-bit quantizers, and corresponding losses with both de facto industry-standard 1/2-rate and associated punctured 3/4-rate codes are evaluated. Assuming optimized thresholds, 4-bit metrics are shown to incur only a small quantization loss. However, results also indicate that the loss is sensitive to suboptimum threshold spacing.  相似文献   

16.
Based on Alamouti code, Lee and Williams proposed two-branch transmit diversity block-coded orthogonal frequency-division multiplexing (TDBC-OFDM) systems, namely, space-time block-coded OFDM (STBC-OFDM) and space-frequency block-coded OFDM (SFBC-OFDM). However, they employed the simple maximum-likelihood (SML) detector, which was designed under the assumption that the channel is static over the duration of a space-time/frequency codeword. Therefore, STBC-OFDM/SFBC-OFDM suffers from the high time/frequency selectivity of the wireless mobile fading channel. In this paper, besides the original SML detector, three detectors proposed by Vielmon et al. are applied to improve the two-branch TDBC-OFDM systems. Additionally, assuming sufficient cyclic prefix, the performances of all systems in spatially uncorrelated time-varying multipath Rayleigh-fading channels are evaluated by theoretical derivation and computer simulation, as well. According to the derived bit-error rate (BER), we further derive the bit-error outage (BEO) to provide a more object judgment on the transmission quality within a fading environment. Numerical results have revealed that significant performance improvement can be achieved even when the systems are operated in highly selective channels.  相似文献   

17.
Bit-error bounds for trellis-coded MPSK in mixed fading channels   总被引:1,自引:0,他引:1  
Bit-error probability (BEP) bounds of trellis-coded MPSK systems over two classes of mixed fading channels are studied. These two classes of channels have been proposed as candidate models for mobile satellite communications. The first class consists of slow and frequency-nonselective fading channels whose output field strengths follow a probability law characterized by a convex combination of Rician and Rayleigh/lognormal distributions. For the other class of fading channels, the received signal amplitude has a convex combination of Rician and Rician/lognormal distributions. We analyze performance bounds for trellis codes that belong to the class of either geometrically uniform codes (GUCs) or quasi-regular codes (QRCs). Receivers with either ideal channel state information (CSI) or no CSI at all are considered. We examine asymptotic behaviors of these codes and identify key design parameters. Numerical results are provided to illustrate and compare the BEP performances of various codes and to validate the usefulness of the asymptotic analysis  相似文献   

18.
This correspondence presents a general approach to upper bounding coded system performance over quasistatic fading channels (QSFC). This approach has the advantage of yielding a closed-form upper bound that converge for all signal-to-noise ratios (SNRs). The proposed approach is used to upper-bound the performance of space-time trellis codes (STTC) over QSFCs. The resulting upper bounds for STTCs are better adapted to the QSFC and present an improvement over worst case pairwise error probability (PEP) analysis used so far. In its second part, this correspondence investigates several ways to reduce the complexity of computing the distance spectrum of STTCs. The combined result obtained from using the new upper bounds and the computed distance spectra are shown to be close to simulated performance for all SNRs.  相似文献   

19.
This paper presents an improved upper bound on the performance of convolutionally coded systems over quasi-static fading channels (QSFC). The bound uses a combination of a classical union bound when the fading channel is in a high signal-to-noise ratio (SNR) state together with a new upper bound for the low SNR state. This new bounding approach is applied to both BPSK convolutional and turbo codes, as well as serially concatenated BPSK convolutional/turbo and space-time block codes. The new analytical technique produces bounds which are usually about 1 dB tighter than existing bounds. Finally, based on the proposed bound, we introduce an improved design criterion for convolutionally coded systems in slow flat fading channels. Simulation results are included to confirm the improved ability of the proposed criterion to search for convolutional codes with good performance over a QSFC.  相似文献   

20.
Cascaded Rayleigh distribution is used to model multipath fading in mobile-to-mobile communication scenarios and provides a better fit to experimental data in such scenarios compared to the conventional Rayleigh channel model. In this letter, we derive an exact expression for the pairwise error probability (PEP) of space-time trellis codes over the cascaded Rayleigh fading channel, which is in the form of a simple single finite-range integral. Through the derived PEP expression, we present the maximum diversity order achievable over such channels and demonstrate the performance degradation in comparison to conventional Rayleigh channels. Monte-Carlo simulations are further demonstrated to confirm the analytical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号