首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper focuses on the robust output precise tracking control problem of uncertain nonlinear systems in pure‐feedback form with unknown input dead zone. By designing an extended state observer, the states unmeasurable problem in traditional feedback control is solved, and the lumped uncertainty, which is caused by system unknown functions and input dead zone, is estimated. In order to apply separation principle, finite‐time extended state observer is designed to obtain system states and estimate the lumped uncertainty. Then, by introducing tracking differentiator, a modified dynamic surface control approach is developed to eliminate the ‘explosion of complexity’ problem and guarantee the tracking performance of system output. Because tracking differentiator is a fast precise signal filter, the closed‐loop control performance is significantly improved when it is used in dynamic surface control instead of first‐order filters. The L stability of the whole closed‐loop system, which guarantees both the transient and steady‐state performance, is shown by the Lyapunov method and initialization technique. Numerical and experiment examples are performed to illustrate our proposed control scheme with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
郭子杰  白伟伟  周琪  鲁仁全 《自动化学报》2019,45(11):2128-2136
针对一类考虑指定性能和带有输入死区约束的严格反馈非线性系统,本文提出了一种自适应模糊最优控制方法.采用模糊逻辑系统逼近系统的未知非线性函数及代价函数,利用backstepping方法及命令滤波技术,设计前馈控制器.针对仿射形式的误差系统,结合自适应动态规划技术,设计最优反馈控制器.采用指定性能控制方法,将系统跟踪误差约束在指定范围内.利用死区斜率信息解决具有死区输入的非线性系统的控制问题.基于Lyapunov稳定性理论,证明闭环系统内所有信号是一致最终有界的.最后仿真结果验证了本文方法的可行性和有效性.  相似文献   

3.
An adaptive neural network (NN)-based output feedback controller is proposed to deliver a desired tracking performance for a class of discrete-time nonlinear systems, which are represented in non-strict feedback form. The NN backstepping approach is utilized to design the adaptive output feedback controller consisting of: (1) an NN observer to estimate the system states and (2) two NNs to generate the virtual and actual control inputs, respectively. The non-causal problem encountered during the control design is overcome by using a dynamic NN which is constructed through a feedforward NN with a novel weight tuning law. The separation principle is relaxed, persistency of excitation condition (PE) is not needed and certainty equivalence principle is not used. The uniformly ultimate boundedness (UUB) of the closed-loop tracking error, the state estimation errors and the NN weight estimates is demonstrated. Though the proposed work is applicable for second order nonlinear discrete-time systems expressed in non-strict feedback form, the proposed controller design can be easily extendable to an nth order nonlinear discrete-time system.  相似文献   

4.
李小华  徐波刘洋 《控制与决策》2016,31(10):1860-1866

针对一类非线性关联大系统在结构扩展时的跟踪控制问题, 提出一种采用自适应神经网络的控制方法. 该方法要求在不改变原结构系统控制律的前提下设计新加入子系统的控制律和自适应律, 使扩展后所有子系统都具有很好的跟踪性能. 这里主要利用神经网络的逼近功能以及Backstepping 技术来设计自适应律和控制律, 通过Lyapunov 理论证明在该控制器的作用下闭环系统的所有信号均是有界的, 并可使系统准确跟踪. 仿真结果验证了所提出方法的有效性.

  相似文献   

5.

In this paper, an adaptive sliding mode neural network(NN) control method is investigated for input delay tractor-trailer system with two degrees of freedom. An uncertain camera-object kinematic tracking error model of a tractor car with n trailers with input delay is proposed. Radial basis function neural networks(RBFNNs) are applied to approximate the unknown functions in the error model. A sliding mode surface with variable structure control is designed by using backstepping method. Then, an adaptive NN sliding mode control method is thus obtained by combining Lyapunov-Krasovskii functionals. The controller realizes the global asymptotic trajectories tracking of the kinematics system. The stability of the closed-loop system is strictly proved by the Lyapunov theory. Matlab simulation results demonstrate the feasibility of the proposed method.

  相似文献   

6.
This paper is devoted to adaptive output tracking for a class of multi‐input multi‐output nonlinear systems with unknown non‐symmetric dead‐zone. With the aid of a matrix factorization and a similarity transformation, a robust adaptive dynamic surface control scheme is proposed and the difficulty caused by the control gain matrix and the dead‐zone is circumvented. By introducing a surface error modification and an initialization technique, we show that the performance of the tracking errors can be guaranteed. Moreover, the proposed scheme contains only one updated parameter at each design step, which significantly reduces the computational burden. It is proven that all signals of the closed‐loop system are semi‐globally uniformly bounded. Simulation results on coupled inverted double pendulums are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

7.
In this paper, robust adaptive output feedback control is studied for a class of discrete‐time nonlinear systems with functional nonlinear uncertainties of the Lipschitz type and unknown control directions. In order to construct an output feedback control, the system is transformed into the form of a nonlinear autoregressive moving average with eXogenous inputs (NARMAX) model. In order to avoid the noncausal problem in the control design, future output prediction laws and parameter update laws with the dead‐zone technique are constructed on the basis of the NARMAX model. With the employment of the predicted future outputs, a constructive output feedback adaptive control is proposed, where the discrete Nussbaum gain technique and the dead‐zone technique are used in parameter update laws. The effect of the functional nonlinear uncertainties is compensated for, such that an asymptotic tracking performance is achieved, whereas other signals in the closed‐loop systems are guaranteed to be bounded. Simulation studies are performed to demonstrate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Novel adaptive neural control design for nonlinear MIMO time-delay systems   总被引:3,自引:0,他引:3  
In this paper, we address the problem of adaptive neural control for a class of multi-input multi-output (MIMO) nonlinear time-delay systems in block-triangular form. Based on a neural network (NN) online approximation model, a novel adaptive neural controller is obtained by constructing a novel quadratic-type Lyapunov-Krasovskii functional, which not only efficiently avoids the controller singularity, but also relaxes the restriction on unknown virtual control coefficients. The merit of the suggested controller design scheme is that the number of online adapted parameters is independent of the number of nodes of the neural networks, which reduces the number of the online adaptive learning laws considerably. The proposed controller guarantees that all closed-loop signals remain bounded, while the output tracking error dynamics converges to a neighborhood of the origin. A simulation example is given to illustrate the design procedure and performance of the proposed method.  相似文献   

9.
In this study, a prescribed performance adaptive fault tolerant tracking control scheme is presented for a class of nonlinear large-scale systems with time delay interconnection, dead zone input, and actuator fault. The radial basis function neural networks are used to approximate unknown nonlinear functions. Different from the barrier Lyapunov functions used to achieve the symmetrical prescribed performance, a new error transformation is introduced in this study to achieve the desired asymmetrical prescribed performance. In addition, Nussbaum function is introduced to solve the difficulties caused by dead zone input and actuator fault. Based on the appropriate Lyapunov–Krasovskii functions, the effect of time delay interconnection could be compensated. By using backstepping procedures, an adaptive fault tolerant tracking control approach is developed for the considered large-scale systems, and the stability of the closed-loop systems is analyzed by Lyapunov theory. Meanwhile, the prescribed performance of the tracking error could be guaranteed. Finally, the effectiveness of the proposed control approach is illustrated by two simulation examples.  相似文献   

10.
Hydraulically actuated robotic mechanisms are becoming popular for field robotic applications for their compact design and large output power. However, they exhibit nonlinearity, parameter variation and flattery delay in the response. This flattery delay, which often causes poor trajectory tracking performance of the robot, is possibly caused by the dead zone of the proportional electromagnetic control valves and the delay associated with oil flow. In this investigation, we have proposed a trajectory tracking control system for hydraulically actuated robotic mechanism that diminishes the flattery delay in the output response. The proposed controller consists of a robust adaptive fuzzy controller with self-tuned adaptation gain in the feedback loop to cope with the parameter variation and disturbances and a one-step-ahead fuzzy controller in the feed-forward loop for hydraulic dead zone pre-compensation. The adaptation law of the feedback controller has been designed by Lyapunov synthesis method and its adaptation rate is varied by fuzzy self-tuning. The variable adaptation rate helps to improve the tracking performance without sacrificing the stability. The proposed control technique has been applied for locomotion control of a hydraulically actuated hexapod robot under independent joint control framework. For tracking performance of the proposed controller has also been compared with classical PID controller, LQG state feedback controller and static fuzzy controller. The experimental results exhibit a very accurate foot trajectory tracking with very small tracking error with the proposed controller.  相似文献   

11.
In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback systems with time-varying full state constraints. The pure-feedback systems of this paper are assumed to possess nonlinear function uncertainties. By using the mean value theorem, pure-feedback systems can be transformed into strict feedback forms. For the newly generated systems, NNs are employed to approximate unknown items. Based on the adaptive control scheme and backstepping algorithm, an intelligent controller is designed. At the same time, time-varying Barrier Lyapunov functions (BLFs) with error variables are adopted to avoid violating full state constraints in every step of the backstepping design. All closedloop signals are uniformly ultimately bounded and the output tracking error converges to the neighborhood of zero, which can be verified by using the Lyapunov stability theorem. Two simulation examples reveal the performance of the adaptive NN control approach.   相似文献   

12.
In this paper, an adaptive neural finite-time control method via barrier Lyapunov function, command filtered backstepping, and output feedback is proposed to solve the tracking problem of uncertain high-order nonlinear systems with full-state constraints and input saturation. By utilizing the neural network (NN) to approximate unknown nonlinear functions, the finite-time command filters are used to filtering the virtual control signals and get the intermediate control signals in a finite time in the backstepping process. Because there are errors between the output of finite-time command filters and the virtual control signals, the error compensation signals are added to eliminate the influence of filtering errors. Based on the proposed control scheme, the states of the system can be constrained in the predetermined region, all signals in the system are bounded in finite time, and the tracking error can converge to the desired region in finite time. At last, a simulation example is given to show the effectiveness of the proposed control method.  相似文献   

13.

This paper studies the problem of finite-time fuzzy adaptive dynamic surface control (DSC) design for a class of single-input and single-output (SISO) high-order nonlinear systems with output constraint. Fuzzy logic systems (FLSs) are utilized to identify the unknown smooth functions. By adopting Barrier Lyapunov function (BLF), the problem of output constrain is handled. Combining adding a power integrator and adaptive backstepping recursion design technique, a novel fuzzy adaptive finite-time DSC algorithm is proposed. Based on finite-time Lyapunov stable theory, the developed control algorithm means that all the signals of the closed-loop system are semi-global practical finite-time stable (SGPFS) and the tracking error converges to a small neighborhood of origin in finite time. In addition, the output does not violate the given constrain bound. Finally, both numerical and practical simulation examples are given to illustrate the effectiveness of the proposed control algorithm.

  相似文献   

14.
This paper presents the use of neural networks (NNs) and genetic algorithms (GAs) to enhance the output tracking performance of partly known robotic systems. Two of the most potential approaches of adaptive control, i.e., the concept of variable structure control (VSC) and NN‐based adaptive control, are ingeniously combined using GAs to achieve high‐performance output tracking. GA is used to make the maximum use of different performance characteristics of two self‐adaptive NN modules by finding the switching function which best combines them. The method will be valid for any rigid revolute robot system. Computer simulations on our active binocular head are included for illustration and verification.  相似文献   

15.
This paper first focuses on the problem of adaptive output feedback stabilization for a more general class of stochastic nonlinear time-delay systems with unknown control directions. By using a linear state transformation, the original system is transformed to a new system for which control design becomes feasible. Then a novel adaptive neural network (NN) output feedback control strategy, which only contains one adaptive parameter, is developed for such systems by combining the input-driven filter design, the backstepping technique, the NN’s parameterization, the Nussbaum gain function method and the Lyapunov–Krasovskii approach. The proposed control design guarantees that all signals in the closed-loop systems are 4-moment (or 2-moment) semi-globally uniformly bounded. Finally, two simulation examples are given to demonstrate the effectiveness and the applicability of the proposed control design.  相似文献   

16.
This paper is concerned with the neural‐based decentralized adaptive control for interconnected nonlinear systems with prescribed performance and unknown dead zone outputs. In the controller design procedure, neural networks are employed to identify unknown auxiliary functions, and the control design obstacle caused by the output nonlinearity is resolved via introducing Nussbaum function. Then, a reliable neural decentralized adaptive control is developed through incorporating the backstepping method and the prescribed performance technique. In the light of Lyapunov stability theory, it is verified that the proposed control scheme can ensure that all the closed‐loop signals are bounded, and can also guarantee that the tracking errors remain within a small enough compact set with the prescribed performance bounds. Finally, some simulation results are given to illustrate the feasibility of the devised control strategy.  相似文献   

17.
孙猛  杨洪 《控制理论与应用》2022,39(8):1442-1450
本文研究了具有输出非对称死区和状态含未知控制方向的非严格反馈非线性系统, 设计了稳定的自适应 神经网络控制器. 首先, 针对输出非对称死区的问题, 本文采用死区逆的方法, 构造光滑模型逼近原死区模型. 其 次, 在控制器设计过程中, 基于障碍Lyapunov函数的构造, 动态面控制和反步法, 设计出自适应控制信号, 虚拟控制 信号和实际控制信号. 通过稳定性分析, 证明所设计的神经网络控制器可以保证闭环系统内所有信号是半全局一致 最终有界. 最后, 通过MATLAB数值仿真, 说明所设计控制器的有效性.  相似文献   

18.
陈明  李小华 《控制与决策》2020,35(5):1259-1264
针对一类具有死区的非仿射非线性系统,将预设性能控制与有限时间控制相结合,提出一种具有预设性能的自适应有限时间跟踪控制方法.基于Backstepping技术、模糊逻辑系统及有限时间Lyapunov稳定理论,给出使系统半全局实际有限时间稳定(semi-globally practically finite-time stable,SGPFS)的充分条件和设计步骤.该控制策略不仅使系统的输出误差在有限时间内收敛到一个预先设定区域,同时保证其收敛速度、最大超调量和稳态误差均满足预先设定的性能要求.最后通过仿真示例验证了所提出设计方法的有效性.  相似文献   

19.
ABSTRACT

This paper investigates the zero-sum differential game problem for a class of uncertain nonlinear pure-feedback systems with output constraints and unknown external disturbances. A barrier Lyapunov function is introduced to tackle the output constraints. By constructing an affine variable at each dynamic surface control design step rather than utilising the mean-value theorem, the tracking control problem for pure-feedback systems can be transformed into an equivalent zero-sum differential game problem for affine systems. Then, the solution of associated Hamilton–Jacobi–Isaacs equation can be obtained online by using the adaptive dynamic programming technique. Finally, the whole control scheme that is composed of a feedforward dynamic surface controller and a feedback differential game control strategy guarantees the stability of the closed-loop system, and the tracking error is remained in a bounded compact set. The simulation results demonstrate the effectiveness of the proposed control scheme.  相似文献   

20.
This paper focuses on an adaptive fuzzy tracking control problem for a class of pure-feedback stochastic nonlinear systems with unknown dead zone outputs. To overcome the design difficulty arising from the nonlinearity in the output mechanism, the new properties of Nussbaum function are employed and an auxiliary virtual controller is constructed. The proposed adaptive fuzzy control method guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error converges to a small neighbourhood of the origin in the sense of mean quartic value. Simulation results further demonstrate the effectiveness of the presented control algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号