首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
A series of experiments is described that elucidates the sources of Ca2+ that contribute to activity-dependent neuronal facilitation in Hermissenda B photoreceptors during associative conditioning. In an in vitro preparation, pairings of a 4-s light with a 3-s mechanical stimulation of presynaptic hair cells increased the input resistance and elicited spike rate (i.e., excitability) of the B photoreceptors in the Hermissenda eye, indicative of a Ca(2+)-dependent process that is analogous to associative conditioning in the intact animal. This increase in excitability was reduced but not eliminated when hyperpolarizing current was applied to the B cell during the pairings, suggesting that voltage-dependent influx of Ca2+ contributed only a portion of the total calcium signal necessary for facilitation. Moreover, no increase in excitability was observed when a comparable current-induced depolarization of the photoreceptor was substituted for light-induced depolarization. In other experiments, Ca(2+)-dependent inactivation of a light-induced Na+ current was used as an index of intracellular Ca2+ concentration. It was determined that light caused a large increase in intracellular Ca2+ concentration regardless of whether the photoreceptor was allowed to freely depolarize in response to light or was voltage clamped at its resting membrane potential. Current-induced depolarization produced a smaller increase, while presynaptic stimulation had no measurable effect. Intracellular injections of either heparin, an antagonist of intracellular Ca2+ release, or EGTA, a general Ca2+ chelator, induced comparable reductions of light-induced Ca2+ accumulation. Finally, intracellular injections of heparin blocked the pairing-induced increases in B cell excitability as effectively as injections of EGTA. Taken as a whole, these data suggest that Ca2+ release from intracellular stores may be sufficient for the induction of facilitation in this preparation, while Ca2+ influx through voltage-dependent channels may have an additive effect and provide further evidence for the ubiquitous role of Ca2+ in learning-related forms of neuronal plasticity.  相似文献   

2.
Behavioural sensitization involves progressive increases in behavioural responses to repeated intermittent administration of drugs of abuse. Behavioural sensitization is observed to the locomotor stimulant, rewarding and discriminative effects of a drug. These are effects which seem to be essential in the initiation, expression and maintenance of a drug-seeking behaviour. Therefore the phenomenon of behavioural sensitization may have important implications for the understanding of addictive processes. Findings given in this review demonstrate the involvement of endogenous opioid systems in the initiation of sensitized responses on the neurochemical level, i.e., within the mesolimbic dopaminergic system, as well as on the behavioural level. Specifically, it is shown that behavioural sensitization to morphine and cocaine is modulated by endogenous kappa-opioid systems.  相似文献   

3.
We investigated the effects of isoproterenol aryl glass beads on the electrical properties of cardiac muscle and related these to our previous results concerning biochemical and contractile effects (Ingebretsen et al., Circ, Rs., 40: 474-484, 1977). Beads (10-15) were placed near one end to guinea pig papillary muscles mounted horizontally in a bath perfused with Krebs-Henseleit solution at 30 degrees C and stimulated at 0.2 Hz. The beads produced increased tension and elevation and slight lengthening of the plateau potential when [k+]o = 3.8 mM. After depolarization to a resting potential of -49 mV with [K+]o = 22 mM, isoproterenol beads restored contraction to a comparable extent as occurred with 10(-8) M soluble drug. During field stimulation, action potentials were initiated at the site of bead application and spread decrementally. When beads were placed distal to the site of point stimulation, virtually no excitation could be obtained from cells in the vicinity of the beads. When they were placed close to the stimulating electrode, the beads increased excitability and typical slow action potentials spread to the other end of the muscle. These potentials had the characteristics associated with the slow inward Ca2+ current. The slow channel blocker, D-600, blocked responses to isoproterenol beads. Tetrodotoxin caused responses similar to those obtained with K+ depolarization. The beads probably act by stimulating only a small fraction of the papillary muscle catecholamine receptors. Spread of action potentials from these sites and propagated tension depend on Ca2+ influx, but the nature of an intermediate messenger involved in the propagation of contractions is unknown.  相似文献   

4.
The present study was designed to evaluate the relationship between reinstatement of drug-seeking behaviour following long-term extinction of intravenous (i.v.) drug self-administration (an animal model for craving) and long-term behavioural sensitization. Rats were allowed to self-administer heroin (50 microg/kg per inj., 14 daily sessions), cocaine (500 microg/kg per inj., 10 daily sessions) or saline. Following a 3-week extinction period, reinstatement tests were performed to evaluate priming effects of amphetamine, cocaine and heroin on nonreinforced drug-seeking behaviour. In addition, the occurrence of long-term behavioural sensitization in rats with a history of heroin or cocaine self-administration was determined. Heroin-seeking behaviour was reinstated by heroin (0.25 mg/kg), amphetamine (1.0 mg/kg) and cocaine (10 mg/kg). In addition, animals with a history of heroin self-administration displayed locomotor sensitization to both heroin and amphetamine. Cocaine-seeking behaviour was reinstated by cocaine and amphetamine, but not by heroin. Interestingly, locomotor sensitization to amphetamine, but not heroin, was observed in animals with a history of cocaine self-administration. In other words, the induction of drug-seeking behaviour following a prolonged drug-free period was found to be associated with the expression of long-term behavioural sensitization. These data provide experimental evidence for a role of behavioural sensitization in the incentive motivation underlying drug-seeking behaviour. If drug hyperresponsiveness would indeed be a crucial factor in drug-induced craving in human addicts, pharmacological readjustment of the neuroadaptations underlying drug sensitization may prevent relapse to drug use long after detoxification.  相似文献   

5.
Although in vitro analyses of long-term changes in the sensorimotor connection of Aplysia have been used extensively to understand long-term sensitization, relatively little is known about the ways in which the connection is modified by learning in vivo. Moreover, sites other than the sensory neurons might be modified as well. In this paper, several different biophysical properties of sensory neurons, motor neurons, and LPl17, an identified interneuron, were examined. Membrane properties of sensory neurons, which were expressed as increased excitability and increased spike afterdepolarization, were affected by the training. The biophysical properties of motor neurons also were affected by training, resulting in hyperpolarization of the resting membrane potential and a decrease in spike threshold. These results suggest that motor neurons are potential loci for storage of the memory in sensitization. The strength of the connection between sensory and motor neurons was affected by the training, although the connection between LPl17 and the motor neuron was unaffected. Biophysical properties of LPl17 were unaffected by training. The results emphasize the importance of plasticity at sensory-motor synapses and are consistent with the idea that there are multiple sites of plasticity distributed throughout the nervous system.  相似文献   

6.
The mechanisms of conditioning of the defensive pneumostome closure reflex and long-term sensitization were studied at the level of electrical characteristics of the command and motor neurons. A significant decrease in membrane and threshold potentials in the command neurons was observed after the acquisition of the defensive reflex and long-term sensitization. These potentials decreased to a greater extent in the snails subjected to conditioning after the sensitization. Changes in the critical depolarization level for the action potential generation and its amplitude were insignificant. Thus, the observed phenomena testify to an increase in membrane excitability of the command neurons. Similar changes were not found in the motor neurons.  相似文献   

7.
Long-lasting facilitations of spinal nociceptive reflexes resulting from temporal summation of nociceptive inputs have been described on many occasions in spinal, nonanesthetized rats. Because noxious inputs also trigger powerful descending inhibitory controls, we investigated this phenomenon in intact, halothane-anesthetized rats and compared our results with those obtained in other preparations. The effects of temporal summation of nociceptive inputs were found to be very much dependent on the type of preparation. Electromyographic responses elicited by single square-wave electrical shocks (2 ms, 0.16 Hz) applied within the territory of the sural nerve were recorded in the rat from the ipsilateral biceps femoris. The excitability of the C-fiber reflex recorded at 1.5 times the threshold (T) was tested after 20 s of electrical conditioning stimuli (2 ms, 1 Hz) within the sural nerve territory. During the conditioning procedure, the C-fiber reflex was facilitated (wind-up) in a stimulus-dependent fashion in intact, anesthetized animals during the application of the first seven conditioning stimuli; thereafter, the magnitude of the responses reached a plateau and then decreased. Such a wind-up phenomenon was seen only when the frequency of stimulation was 0.5 Hz or higher. In spinal, unanesthetized rats, the wind-up phenomenon occurred as a monotonic accelerating function that was obvious during the whole conditioning period. An intermediate picture was observed in the nonanesthetized rat whose brain was transected at the level of the obex, but the effects of conditioning were profoundly attenuated when such a preparation was anesthetized. In intact, anesthetized animals the reflex was inhibited in a stimulus-dependent manner during the postconditioning period. These effects were not dependent on the frequency of the conditioning stimulus. Such inhibitions were blocked completely by transection at the level of the obex, and in nonanesthetized rats were then replaced by a facilitation. A similar long-lasting facilitation was seen in nonanesthetized, spinal rats. It is concluded that, in intact rats, an inhibitory mechanism counteracts the long-lasting increase of excitability of the flexor reflex seen in spinal animals after high-intensity, repetitive stimulation of C-fibers. It is suggested that supraspinally mediated inhibitions also participate in long term changes in spinal cord excitability after noxious stimulation.  相似文献   

8.
1. In cats anesthetized with sodium pentobarbital, recordings were made from dorsal root ganglion (DRG) cells having a peripheral process in the gastrocnemius-soleus (GS) nerve. The GS nerve was left in continuity with the muscle to allow identification of group Ia and Ib fibers by responses of the receptors to muscle stretch and contraction. The central processes of the DRG cells were activated antidromically by stimulation within the spinal cord so that changes in the excitability of the fibers could be examined following conditioning volleys in muscle and cutaneous nerves. 2. Recordings were made from 44 DRG cells. Of these, 15 were group Ia and 9 group Ib afferents of the GS nerve. 3. Of 15 Ia fibers, 12 were activated antidromically by stimulation in the motor nucleus, but no Ib fibers were discharged by such stimulation. Ib fibers could be antidromically activated by stimulation in the intermediate nucleus. 4. The central processes of the Ia DRG cells had slower conduction velocities than did the peripheral processes. 5. The thresholds to electrical stimulation of the peripheral processes of Ia and Ib fibers of the GS nerve showed considerable overlap. 6. All of the Ia DRG cells tested showed an increased excitability following conditioning volleys in the biceps-semitendinosus (BST) nerve. The increase in excitability was produced by the largest fibers of the BST nerve. 7. Stimulation of the sural (SU) or superficial peroneal (SP) cutaneous nerves also increased the excitability of some Ia fibers. However, other Ia fibers were unaffected, and in two cases the excitability was reduced. 8. The excitability of group Ib fibers was increased by conditioning volleys in the BST, SU, or SP nerves. 9. It is concluded that cutaneous volleys produce a mixture of primary afferent depolarization and primary afferent hyperpolarization in Ia fibers of anesthetized cats. Such converse actions probably cancel in excitability tests using population responses. 10. The excitability of single Ia fibers is not stationary in excitability presumably reflect slow alterations within the central nervous system, perhaps related to spontaneous alterations in the level of tonically maintained primary afferent depolarization.  相似文献   

9.
1. Double-barrelled ion-selective microelectrodes were used to examine the effects of exogenous noradrenaline upon the membrane potential (Em) and intracellular chloride concentration ([Cl]i) of arterial smooth muscle from the saphenous branch of the femoral artery of the rat. 2. After treatment with 0.6 mM 6-hydroxydopamine (to functionally denervate the tissue), exogenous noradrenaline (5 nM) caused repeatable depolarization of Em from -63.7 +/- 2.4 mV (s.d., n = 18) to -53.8 +/- 3.4 mV (P < 0.0001) and increases in [Cl]i from 31.0 +/- 0.5 mM to 42.5 +/- 2.2 mM (P < 0.0001). 3. In the presence of 10 microM bumetanide (an inhibitor of (Na-K-Cl) cotransport), 5 nM noradrenaline caused a depolarization of Em of 3.0 +/- 3.2 mV, and a rise in [Cl]i of 4.5 +/- 2.5 mM. 4. In the presence of bumetanide and 1 mM acetazolamide (used as an inhibitor of a Na-independent inward Cl pump), noradrenaline had no effect on Em or [Cl]i. 5. In the absence of extracellular chloride, the rise in apparent [Cl]i in response to 5 nM noradrenaline was abolished but there was a depolarization of 2.0 +/- 3.9 mV. 6. These results are consistent with the stimulation of (Na-K-Cl) cotransport and a Na-independent Cl pump by exogenous noradrenaline and with the consequent increase in [Cl]i and shift in ECl potentiating the depolarization caused by noradrenaline. The possibility that modulation of [Cl]i may be a general mechanism of Em regulation is discussed.  相似文献   

10.
In the developing visual cortex activity-dependent refinement of synaptic connectivity is thought to involve synaptic plasticity processes analogous to long-term potentiation (LTP). The recently described conversion of so-called silent synapses to functional ones might underlie some forms of LTP. Using whole-cell recording and minimal stimulation procedures in immature pyramidal neurons, we demonstrate here the existence of functionally silent synapses, i.e., glutamatergic synapses that show only NMDA receptor-mediated transmission, in the neonatal rat visual cortex. The incidence of silent synapses strongly decreased during early postnatal development. After pairing presynaptic stimulation with postsynaptic depolarization, silent synapses were converted to functional ones in an LTP-like manner, as indicated by the long-lasting induction of AMPA receptor-mediated synaptic transmission. This conversion was dependent on the activation of NMDA receptors during the pairing protocol. The selective activation of NMDA receptors at silent synapses could be explained presynaptically by assuming a lower glutamate concentration compared with functional ones. However, we found no differences in glutamate concentration-dependent properties of NMDA receptor-mediated PSCs, suggesting that synaptic glutamate concentration is similar in silent and functional synapses. Our results thus support a postsynaptic mechanism underlying silent synapses, i.e., that they do not contain functional AMPA receptors. Synaptic plasticity at silent synapses might be expressed postsynaptically by modification of nonfunctional AMPA receptors or rapid membrane insertion of AMPA receptors. This conversion of silent synapses to functional ones might play a major role in activity-dependent synaptic refinement during development of the visual cortex.  相似文献   

11.
The muscarinic acetylcholine receptor antagonist scopolamine, but not the beta-adrenoceptor antagonist propranolol or atenolol, suppressed tetanus-induced long-term potentiation (LTP) of population spikes in the rat hippocampal CA1 region. When scopolamine was coapplied with propranolol or atenolol, a synergistic effect in preventing LTP generation was observed. On the other hand, the coapplication of scopolamine and atenolol failed to affect tetanus-induced LTP of field EPSP. These findings suggest that cooperative mechanisms via muscarinic and beta-adrenergic receptor activation might contribute to LTP induction in terms of the EPSP-spike potentiation, i.e., an increase in the excitability of hippocampal CA1 pyramidal cells after tetanic stimulation, but are independent of the tetanus-evoked potentiation of a synaptic component.  相似文献   

12.
Intermittent morphine pretreatment (10 mg/kg/day for 14 days) induced long-lasting (one month post-treatment) sensitization to the locomotor effects of morphine and amphetamine in rats. Co-administration of the non-competitive NMDA-receptor antagonist dizocilpine (MK-801) (0.1 mg/kg) with morphine did not prevent the development of long-term behavioural sensitization. However, this dose of MK-801 did cause long-term sensitization to its own locomotor effects. Co-administration of 0.25 mg/kg MK-801 with morphine caused death in 60% of the animals. In the animals that survived MK-801 plus morphine pretreatment, neither short-term (3 days) nor long-term morphine-induced sensitization was observed. MK-801 alone (0.25 mg/kg/day for 14 days) induced short-term cross-sensitization to morphine. Thus, the development of long-term morphine-induced locomotor sensitization could only be prevented by a dose of MK-801 that yields a lethal combination with morphine. In addition, MK-801 induced sensitization to its own locomotor effects and cross-sensitization to morphine. These findings seriously question whether MK-801 can be used to study the development of morphine-induced behavioural sensitization.  相似文献   

13.
Tested excitability of the reflex nictitating membrane (NM) response to air puff and of the abducens motoneurons (final common path) to direct electrical stimulation (measured as amplitude of the evoked NM response) in 16 New Zealand albino rabbits at various times after onset and offset of a 350-msec tone. Excitability to air puff showed a substantial increase during tone on and a gradual decrease following tone off, in agreement with J. R. Ison and D. W. Leonard (see record 1971-22356-001). Excitability of motoneurons showed a similar marked increase during tone on, a transient decrease immediately following tone off, and then a gradual decrease. It is suggested that these excitability changes, which parallel closely the interstimulus-interval conditionability function reported by I. Gormezano (1966) for the same preparation, may provide an independent measure of the "molar stimulus trace." Excitability of abducens motoneurons tested in the intertrial intervals during subsequent tone-air-puff conditioning showed no consistent changes. Surprisingly, Ss given tone-abducens nucleus shock testing developed conditioned responses. In subsequent conditioning, using standard tone-air-puff training, they showed 85% savings in acquisition relative to nonstimulated controls. (16 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Energy deprivation, as a result of aglycemia, leads to depression of the central synaptic transmission. Endogenous adenosine has been implicated in this depressant effect. We have studied the possible involvement of endogenous adenosine in the depression of corticostriatal excitatory transmission induced by glucose deprivation by using intracellular recordings in brain slices. After stimulation of corticostriatal fibers, EPSPs were recorded from striatal spiny neurons. Adenosine (3-300 microM) or brief periods (5-10 min) of aglycemia reduced the EPSP amplitude but did not alter the membrane potential and the resistance of the recorded cells. These inhibitory effects were not associated with an alteration of the postsynaptic sensitivity to exogenous glutamate but were coupled with an increased paired-pulse facilitation, suggesting the involvement of presynaptic mechanisms. A delayed postsynaptic membrane depolarization/inward current was detected after 15-20 min of glucose deprivation. The presynaptic inhibitory effects induced by adenosine and aglycemia were both antagonized either by the nonselective adenosine receptor antagonist caffeine (2.5 mM) or by the A1 receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine (CPT, 1 microM) and 1,3-dipropyl-8-cyclopentylxanthine (CPX, 300 nM). Conversely, these antagonists affected neither the delayed membrane depolarization/inward current nor the underlying conductance increase produced by glucose deprivation. The ATP-sensitive potassium channel blockers tolbutamide (1 mM) and glipizide (100 nM) had no effect on the aglycemia-induced decrease of EPSP amplitude. Our data demonstrate that endogenous adenosine acting on A1 receptors mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses, whereas ATP-dependent potassium channels do not play a significant role in this presynaptic inhibition.  相似文献   

15.
This study investigated the size of, and relationship between, different modulatory effects of aversive stimulation on the acoustic startle reflex. This reflex is potentiated by shock exposure and associative shock conditioning (in animals and human volunteers) and unpleasant pictures (in human volunteers). In this study, dramatic sensitization of the probe-startle response was observed after shock exposure but not after a control task. Magnitude of sensitization was significantly larger than associative shock conditioning and picture modulation effects (also significant). Sensitization and conditioning scores showed modest, significant correlations with one another but not with picture modulation scores, consistent with animal data showing that partially overlapping brain mechanisms (i.e., amygdaloid-reticular projections) mediate these effects. The present results also indicate that sensitization of startle in human volunteers is a relatively more robust defensive response to aversive stimulation.  相似文献   

16.
The role of transforming growth factor-beta (TGF-beta) in long-term synaptic facilitation was examined in isolated Aplysia ganglia. Treatment with TGF-beta1 induced long-term facilitation (24 and 48 hours), but not short-term (5 to 15 minutes) or intermediate-term (2 to 4 hours) facilitation. The long-term effects of TGF-beta1 were not additive with those of serotonin. Moreover, serotonin-induced facilitation was blocked by an inhibitor of TGF-beta. Thus, activation of TGF-beta may be part of the cascade of events underlying long-term sensitization, consistent with the hypothesis that signaling molecules that participate in development also have roles in adult neuronal plasticity.  相似文献   

17.
Evidence suggests that phospholipase A2 (PLA2) activation is involved in numerous neuroplastic phenomena, including long-term potentiation. Considering the pharmacological similarities between long-term potentiation and stimulant sensitization, it seems possible that PLA2 inhibition activity also might have a role in the induction of stimulant sensitization. In this study, we have investigated whether PLA2 inhibition, by quinacrine, has any effects on stimulant-induced behavioral sensitization. Both locomotor and stereotypic behavioral sensitization were dose-dependently blocked in rats pretreated with quinacrine (8-25 mg/kg i.p.) 15 min before cocaine (30 mg/kg i.p.), when tested with cocaine (15 mg/kg i.p) 72 hr later. Similar results also were found with d-amphetamine (2 mg/kg i.p.) sensitization using a 10-day treatment regimen with testing on day 11. The ability of PLA2 activation, by melittin, to produce cocaine sensitization also was tested. Local injections of melittin (0.1 microgram/0.4 microliter) into the ventral tegmental area sensitized the subsequent stimulation of locomotor activity, stereotypy and nucleus accumbens dopamine release by cocaine, when tested 72 hr later. Local injections of melittin (0.1-1.0 microgram/0.8 microliter) into the nucleus accumbens had a moderate sensitizing effect on locomotion. Quinacrine (16 mg/kg) pretreatment 45 min before intraventral tegmental area melittin injection significantly decreased melittin-induced sensitization of the locomotor and stereotypy response to cocaine. These results indicate that PLA2 activation may play a role in the induction of stimulant sensitization. It is proposed that PLA2 activity in mesolimbic dopamine neurons, at the level of the cell bodies and perhaps the nerve terminals, is involved in the biochemical mechanisms mediating the development of stimulant sensitization.  相似文献   

18.
The synaptic growth that accompanies 5-HT-induced long-term facilitation of the sensory to motor neuron connection in Aplysia is associated with the internalization of apCAM at the surface membrane of the sensory neuron. We have now used epitope tags to examine the fate of each of the two apCAM isoforms (membrane bound and GPI-linked) and find that only the transmembrane form is internalized. This internalization can be blocked by overexpression of transmembrane constructs with a single point mutation in the two MAPK consensus sites, as well as by injection of a specific MAPK antagonist into sensory neurons. These data suggest MAPK phosphorylation at the membrane is important for the internalization of apCAMs and, thus, may represent an early regulatory step in the growth of new synaptic connections that accompanies long-term facilitation.  相似文献   

19.
Long-term potentiation (LTP), the increase in synaptic strength evoked by high-frequency stimulation, is often considered to be a cellular model for learning and memory. The validity of this model depends on the assumptions that physiological stimuli can induce LTP in vivo and that the resulting synaptic modifications correlate with behavioural changes. However, modifiable synapses are generally embedded deep in complex circuits. In contrast, the goldfish Mauthner (M)-cell and its afferent synapses are easily accessible for electrophysiological studies, and firing of this neuron is sufficient to trigger fast escape behaviour in response to sudden stimuli. We have previously shown that tetanic stimulation can induce LTP of the feedforward inhibitory synapses that control the excitability of the M-cell. Here we report that natural sensory stimulation can induce potentiation of this inhibitory connection that resembles the LTP induced by afferent tetanization. Furthermore, comparable acoustic stimulation produced a parallel decrease in the probability of the sound-evoked escape reflex. Thus we demonstrate for the first time, to our knowledge, a behavioural role for the long-term synaptic strengthening of inhibitory synapses.  相似文献   

20.
The effects of nembutal and ketamine anesthesia on motor evoked potentials (MEPs) and spinal segment reflex (H-response, F and M waves) were investigated in rats by magnetic stimulation. These potentials were generated by magnetic stimulation of the motor cortex and the spinal cord (L4-L5). After application of nembutal, MEP and H-response decreased in amplitude, eventually disappearing. The amplitudes of F and M waves increased and persisted at the increased levels during anesthesia. The latencies of F and M waves were constant before and after anesthesia. Following ketamine administration, the threshold, latency and amplitude of the magnetically induced MEPs, and M, F and H responses were not influenced systematically. The results suggested that MEPs and H-response depression and/or disappearance due to synaptic site suppression after nembutal anesthesia, and the increase and persistence of increased F and M waves amplitudes were all due to the increasing motoneuron excitability, whereas ketamine did not affect synaptic sites subjected to magnetic stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号