首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sorption of SPANDS from aqueous solution onto the macroporous polystyrene anion exchangers of weakly basic Amberlyst A-21 and strongly basic Amberlyst A-29 in a batch method was studied. The effect of initial dye concentration and phase contact time was considered to evaluate the sorption capacity of anion exchangers. Equilibrium data were attempted by various adsorption isotherms including the Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models. A comparison of kinetic models applied to the adsorption rate constants and equilibrium sorption capacities was made for the Lagergren first-order, pseudo second-order and Morris–Weber intraparticle diffusion kinetic models. The results showed that the adsorption isotherm is in the good agreement with the Langmuir equation and that the adsorption kinetics of SPADNS on both anion exchangers can be best described by the pseudo second-order model.  相似文献   

2.
In this study, the phenol adsorption capacity of cetyltrimethylammonium bromide modified clays (MMT-CTAB) and cetyltrimethylammonium bromide modified pulp tea (WPT-CTAB) were studied. In batch adsorption experiments performed with MMT-CTAB, the effects of parameters such contact time, phenol concentration, pH of solution and adsorbent dosage were investigated. The effect of temperature on phenol adsorption onto MMT-CTAB and WPT-CTAB was examined; equilibrium and thermodynamic studies were completed. The highest phenol removal was found at pH 4.0 for MMT-CTAB and WPT-CTAB. To analyze the kinetics of phenol adsorption onto MMT-CTAB, the pseudo first-order and pseudo second-order kinetic models were applied. The kinetic data fitted better to the pseudo second-order model than the pseudo first-order kinetic model for MMT-CTAB. The characterization of adsorbents in phenol adsorption was clarified with the FTIR technique. Thermodynamic parameters such as ΔH°, ΔS° and ΔG° were calculated for each adsorption process. The adsorption process was found to be exothermic and spontaneous for phenol adsorption by MMT-CTAB and WPT-CTAB. The results were analyzed with the Langmuir, Freundlich, Temkin and Harkins–Jura equations using linearized correlation coefficients at different temperatures. The Langmuir equation was found to best represent the equilibrium data for phenol adsorption onto MMT-CTAB and WPT-CTAB.  相似文献   

3.
The adsorption of phosphate onto alunite in a batch adsorber has been studied. Four kinetic models including pseudo first- and second-order equation, intraparticle diffusion equation and the Elovich equation were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of phosphate onto alunite could be described by the pseudo second-order equation. Adsorption of phosphate onto alunite followed the Langmuir isotherm. A model has been used for the design of a two-stage batch adsorber based on pseudo second-order adsorption kinetics. The model has been optimized with respect to operating time in order to minimize total operating time to achieve a specified amount of phosphate removal using a fixed mass of adsorbent. The results of two-stage batch adsorber design studies showed that the required times for specified amounts of phosphate removal significantly decreased. It is particularly suitable for low-cost adsorbents/adsorption systems when minimising operating time is a major operational and design criterion, such as, for highly congested industrial sites in which significant volume of effluent need to be treated in the minimum amount of time.  相似文献   

4.
The adsorption of Congo Red onto bentonite in a batch adsorber has been studied. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of Congo Red onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. Adsorption of Congo Red onto bentonite followed the Langmuir isotherm. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm.  相似文献   

5.
Perchlorate removal by quaternary amine modified reed   总被引:3,自引:0,他引:3  
We report a kinetic and equilibrium study of perchlorate adsorption onto giant reed modified by quaternary amine (QA) functional groups in batch reactors. The effect of pH, contact time, and initial perchlorate concentration on removal was investigated. The adsorption capacity for perchlorate was 169 mg/g on the modified reed (MR) particles ranging in size from 100 to 250 μm. The isotherm results were best described by the combined Langmuir-Freundlich equation. Optimum removal occurred in the pH range 3.5-7.0 and was reduced at pH>8.5. The maximum adsorption rate occurred within the first minute of contact and equilibrium was achieved within 7 min. A three-stage adsorption occurred. In stage 1, adsorption was rapid and was controlled by boundary layer diffusion. In stage 2, adsorption was gradual and was controlled by both boundary layer and intraparticle diffusion. In stage 3, adsorption reached a plateau. The kinetic results fit well with a pseudo second-order equation. The adsorption mechanism was explored using Zeta potential analysis and Raman spectroscopy. Zeta potential measurements showed that reed modification enhanced perchlorate removal by increasing the surface potential. Electrostatic attraction between perchlorate anion and positively charged quaternary amine groups on the MR was the primary mechanism responsible for perchlorate removal.  相似文献   

6.
The adsorption of Al(III) from aqueous solutions onto chitosan was studied in a batch system. The isotherms and the kinetics of adsorption with respect to the initial Al(III) concentration and temperature were investigated. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms. Equilibrium data fitted very well to the Langmuir model in the entire concentration range (5-40 mg/L). The negative values of free energy (DeltaG degrees ) and enthalpy (DeltaH degrees ) for the adsorption of Al(III) onto chitosan indicated that the adsorption process is a spontaneous and exothermic one. Two simplified kinetic models, based on pseudo first-order and pseudo second-order equations, were tested to describe the adsorption mechanism. The pseudo second-order kinetic model resulted in an activation energy of 56.4 kJ/mol. It is suggested that the overall rate of Al(III) ion adsorption is likely to be controlled by the chemical process. The values of the enthalpy (DeltaH(#)) and entropy (DeltaS(#)) of activation were 53.7 kJ/mol and -164.4 J/molK, respectively. The free energy of activation (DeltaG(#)) at 30 degrees C was 103.5 kJ/mol.  相似文献   

7.
In this study, activated carbon (WA11Zn5) was prepared from waste apricot, which is waste in apricot plants in Malatya, by chemical activation with ZnCl(2). BET surface area of activated carbon is determined as 1060 m(2)/g. The ability of WA11Zn5, to remove naproxen sodium from effluent solutions by adsorption has been studied. Equilibrium isotherms for the adsorption of naproxen sodium on activated carbon were measured experimentally. Results were analyzed by the Langmiur, Freundlich equation using linearized correlation coefficient at 298 K. The characteristic parameters for each isotherm have been determined. Langmiur equation is found to best represent the equilibrium data for naproxen sodium-WA11Zn5 systems. The monolayer adsorption capacity of WA11Zn5 for naproxen sodium was found to be 106.38 mg/g at 298 K. The process was favorable and spontaneous. The kinetics of adsorption of naproxen sodium have been discussed using three kinetic models, i.e., the pseudo first-order model, the pseudo second-order model, the intraparticle diffusion model. Kinetic parameters and correlation coefficients were determined. It was shown that the pseudo second-order kinetic equation could describe the adsorption kinetics for naproxen sodium onto WA11Zn5. The thermodynamic parameters, such as DeltaG degrees , DeltaS degrees and DeltaH degrees, were calculated. The thermodynamics of naproxen sodium-WA11Zn5 system indicates endothermic process.  相似文献   

8.
The sorption of lead ion onto palm kernel fiber was studied by performing batch kinetic sorption experiments. The batch sorption model, based on a pseudo-second-order mechanism, was applied to predict the rate constant of sorption, the equilibrium capacity and the initial sorption rate with the effects of the initial solution pH and fiber dose. Equilibrium concentrations were evaluated with the equilibrium capacity obtained from the pseudo-second-order rate equation. In addition, pseudo-isotherms were also obtained by changing fiber doses using the equilibrium concentration and equilibrium capacity obtained based on the pseudo-second-order constants.  相似文献   

9.
The biosorption of lead ions from aqueous solution by Syzygium cumini L. was studied in a batch adsorption system as a function of pH, contact time, lead ion concentration, adsorbent concentration and adsorbent size. The biosorption capacities and rates of lead ions onto S. cumini L. were evaluated. The Langmuir, Freundlich, Redlich-Peterson and Temkin adsorption models were applied to describe the isotherms and isotherm constants. Biosorption isothermal data could be well interpreted by the Langmuir model followed by Temkin model with maximum adsorption capacity of 32.47 mg/g of lead ion on S. cumini L. leaves biomass. The kinetic experimental data were properly correlated with the second-order kinetic model.  相似文献   

10.
The adsorption kinetics of a cationic dye, methylene blue (MB), onto the silica nano-sheets derived from vermiculite via acid leaching was investigated in aqueous solution in a batch system with respect to contact time, initial dye concentration, pH, and temperature. Experimental results have shown that increasing initial dye concentration favors the adsorption while the acidic pH and temperature go against the adsorption. Experimental data related to the adsorption of MB on the silica nano-sheets under different conditions were applied to the pseudo-first-order equation, the pseudo-second-order equation and the intraparticle diffusion equation, and the rate constants of first-order adsorption (k(1)), the rate constants of second-order adsorption (k(2)) and intraparticle diffusion rate constants (k(int)) were calculated, respectively. The experimental data fitted very well the pseudo-second-order kinetic model. The activation energy of system (E(a)) was calculated as 3.42 kJ/mol. The thermodynamics parameters of activation such as Gibbs free energy, enthalpy, entropy were also evaluated and found that DeltaG*, DeltaH*, and DeltaS* are 65.95 (71.63, 77.45)kJ/mol, 0.984 (0.776, 0.568)kJ/mol, and -0.222 (-0.223, -0.224)kJ/(Kmol) at 20 (45, 70) degrees C, respectively. The desorption of the dye on the silica nano-sheets using ethanol was also investigated primarily.  相似文献   

11.
环境中存在的重金属铬对人体健康有严重的危害, 本研究采用水热共缩聚法制备了一种对Cr 6+有较高吸附能力的介孔材料SBA-15-SH。经红外光谱证实, 通过使用改性硅源3-巯丙基三甲氧基硅烷, 对SBA-15成功实现了巯基改性。经扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察, 所制备的材料呈棒状, 具有均匀的孔道结构, 孔径约为7 nm。将制备材料用于重金属Cr 6+的吸附, 研究了吸附时间、环境温度、Cr 6+溶液pH和初始浓度以及吸附剂用量对吸附剂吸附性能的影响。研究表明: 该材料吸附Cr 6+的平衡吸附时间约10 min, 吸附过程符合Langmuir方程与伪二级动力学模型。当Cr 6+溶液pH为4.0、吸附温度在25~45 ℃时, 介孔材料SBA-15-SH对Cr 6+吸附量最大, 达到6.85 mg/g。将本方法用于自来水和工业废水中Cr 6+的吸附, 回收率介于95%~105%之间。  相似文献   

12.
The biosorption of copper(II) ions from aqueous solution by Tectona grandis L.f. was studied in a batch adsorption system as a function of pH, metal ion concentration, adsorbent concentration and adsorbent size. The biosorption capacities and rates of copper(II) ions onto T. grandis L.f. were evaluated. The Langmuir, Freundlich, Redlich-Peterson and Temkin adsorption models were applied to describe the isotherms and isotherm constants. Biosorption isothermal data could be well interpreted by the Langmuir model with maximum adsorption capacity of 15.43 mg/g of copper(II) ion on T. grandis L.f. leaves powder. The kinetic experimental data properly correlated with the second-order kinetic model. Various thermodynamic parameters such as deltaG(o), deltaH(o), and deltaS(o) were calculated indicating that this system was a spontaneous and exothermic process.  相似文献   

13.
Palm kernel fibre is a common agricultural waste in West Africa and its use as an adsorbent for the removal of copper ions from aqueous solution has been studied. Batch kinetics studies were carried out based on the assumption of the pseudo-second-order kinetic model, which was developed to predict the rate constant of adsorption, the equilibrium adsorption capacity and initial adsorption rate with the effect of initial copper concentration and reaction temperature. A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the pseudo-second-order kinetic model for the adsorption of copper onto palm kernel fibre.  相似文献   

14.
A process technology has been developed for recovery of naringin from kinnow (citrus) peels, which is a waste. The kinnow peels were boiled with water to extract naringin into water. It was adsorbed on an indigenous macroporous resin, Indion PA-500. Naringin was recovered from the saturated resin by desorption with ethanol as a solvent. The equilibrium and kinetic studies for both adsorption and desorption are presented. The Langmuir isotherm described the adsorption equilibrium data. However, desorption data were best described by the Toth isotherm. Adsorption and desorption kinetic data were found to follow a pseudo-second-order rate equation and second-order rate equation, respectively. Recovery of naringin was about 49% w/w (based on naringin present in peel-boiled extract). The purity of final products was 91–94% w/w.  相似文献   

15.
The biosorption of a cationic dye, malachite green oxalate (MG) from aqueous solution onto an invasive marine alga Caulerpa racemosa var. cylindracea (CRC) was investigated at different temperatures (298, 308 and 318 K). The dye adsorption onto CRC was confirmed by FTIR analysis. Equilibrium data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (DR) equations. All of the isotherm parameters were calculated. The Freundlich model gave a better conformity than Langmuir equation. The mean free energy values (E) from DR isotherm were also estimated. In order to clarify the sorption kinetic, the fit of pseudo-first-order kinetic model, second-order kinetic model and intraparticle diffusion model were investigated. It was obtained that the biosorption process followed the pseudo-second-order rate kinetics. From thermodynamic studies the free energy changes were found to be -7.078, -9.848 and -10.864 kJ mol(-1) for 298, 308 and 318 K, respectively. This implied the spontaneous nature of biosorption and the type of adsorption as physisorption. Activation energy value for MG sorption (E(a)) was found to be 37.14 kJ mol(-1). It could be also derived that this result supported physisorption as a type of adsorption.  相似文献   

16.
This communication presents the results pertaining to the investigation conducted on color removal of trisazo direct dye, C.I.Direct Brown 1:1 by adsorption onto coal based sorbents viz. charfines, lignite coal, bituminous coal and comparing results with activated carbon (Filtrasorb-400). The kinetic sorption data indicated the sorption capacity of the different coal based sorbents. The sorption interaction of direct dye on to coal based sorbents obeys first-order irreversible rate equation and activated carbon fits with the first-order reversible rate equation. Intraparticle diffusion studies revealed the dye sorption interaction was complex and intraparticle diffusion was not only the rate limiting step. Isothermal data fit well with the rearranged Langmuir adsorption model. R(L) factor revealed the favorable nature of the isotherm of the dye-coal system. Neutral solution pH yielded maximum dye color removal. Desorption and interruption studies further indicated that the coal based sorbents facilitated chemisorption in the process of dye sorption while, activated carbon resulted in physisorption interaction.  相似文献   

17.
This paper deals with the application of wheat shells (WS), an agricultural by-product, for the removal of direct blue 71 (DR) from aqueous solution. The characteristics of WS surface, such as surface area, Bohem titration and scanning electron microscopy (SEM) were obtained. The removal of direct blue 71 onto WS from aqueous solution was investigated by using parameters, such as pH, temperature, adsorbent dose, contact time and initial concentration. The adsorption process attains equilibrium within 36 h. The extent of dye removal decreased with increasing adsorbent dosage and also increased with increasing contact time, temperature, in solution concentration. Optimum pH value for dye adsorption was determined between 6 and 8. The experimental data were analysed by the Langmuir and Freundlich models of adsorption. It was found that the Langmuir equation fit better than the Freundlich equation. Maximum adsorption capacity (Q(m)) was calculated as at different temperatures (293, 303 and 313 K) 40.82, 45.66 and 46.30 mgg(-1), respectively. In addition, the adsorption data obtained at different temperatures of DR by WS were applied to pseudo first-order, pseudo second-order and Weber-Morris equations, and the rate constants of first-order adsorption (k(1)), the rate constants of second-order adsorption (k(2)) and intraparticle diffusion rate constants (k(3)) at these temperatures were calculated, respectively. The rates of adsorption were found to conform to pseudo second-order kinetics with good correlation (R(2)>or=0.9904). Also, free energy of adsorption (DeltaG degrees), enthalpy (DeltaH degrees), and entropy (DeltaS degrees) changes were determined to predict the nature of adsorption. Furthermore, the results indicate that WS could be employed as a low-cost alternative to other adsorbents in the removal of direct blue 71 from aqueous solution.  相似文献   

18.
In this study, adsorption of Cr(VI) onto the four low-cost biosorbents (Laminaria japonica, P. yezoensis Ueda, rice bran and wheat bran) was investigated depending on solution pH, contact time, adsorbent concentration and adsorption isotherms by employing batch adsorption technique. The adsorption capacities were significantly influenced by solution pH, with lower pH favoring higher Cr(VI) removal for various biosorbents. The ionic strength of NaCl was also observed to have a significant impact on the Cr(VI) adsorption due to the competition of Cl(-) in the aqueous solutions. The batch equilibrium data were correlated to Langmuir and Freundlich isotherms and the data fitted better to the Freundlich isotherm equation. The apparent thermodynamic parameters were calculated for each of the four biosorbents and the obtained numerical values showed that the Cr(VI) adsorption onto the various low-cost biosorbents is spontaneous, entropy-driven and endothermic processes. The batch kinetic data were correlated to the pseudo-first order and pseudo-second order models and the data fitted better to the pseudo-second order equation. An intraparticle diffusion model was applied to investigate the adsorption mechanisms. The adsorption capacities for various biosorbents studied in this work were inversely proportional to the adsorbent concentrations.  相似文献   

19.
This paper presents a study on the batch adsorption of basic dye, methylene blue, from aqueous solution (40 mg L(-1)) onto cedar sawdust and crushed brick in order to explore their potential use as low-cost adsorbents for wastewater dye removal. Adsorption isotherms were determined at 20 degrees C and the experimental data obtained were modelled with the Langmuir, Freundlich, Elovich and Temkin isotherm equations. Adsorption kinetic data determined at a temperature of 20 degrees C were modelled using the pseudo-first and pseudo-second-order kinetic equations, liquid-film mass transfer and intra-particle diffusion models. By considering the experimental results and adsorption models applied in this study, it can be concluded that equilibrium data were represented well by a Langmuir isotherm equation with maximum adsorption capacities of 142.36 and 96.61 mg g(-1) for cedar sawdust and crushed brick, respectively. The second-order model best describes adsorption kinetic data. Analysis of adsorption kinetic results indicated that both film- and particle-diffusion are effective adsorption mechanisms. The Influence of temperature and pH of the solution on adsorption process were also studied. The extent of the dye removal decreased with increasing the solution temperature and optimum pH value for dye adsorption was observed at pH 7 for both adsorbents. The results indicate that cedar sawdust and crushed brick can be attractive options for dye removal from dilute industrial effluents.  相似文献   

20.
A two in one attempt for the removal of tartrazine and metal ions on activated carbon has been developed. The method was based on the modification of activated carbon with tartrazine then its application for the removal of Pb(II), Cd(II) and Cr(III) ions at different pH values. Tartrazine adsorption data were modelled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacities qm were 121.3, 67 and 56.7mgg(-1) at initial pH values of 1.0, 6.0 and 10, respectively. The adsorption of tartrazine onto activated carbon followed second-order kinetic model. The equilibrium time was found to be 240min at pH 1.0 and 120min at pH 10 for 500mgL(-1) tartrazine concentration. A maximum removal of 85% was obtained after 1h of contact time. The presence of tartrazine as modifier enhances attractive electrostatic interactions between metal ions and carbon surface. The adsorption capacity for Pb(II), Cd(II) and Cr(III) ions has been improved with respect to non-modified carbon reaching a maximum of 140%. The adsorption capacity was found to be a pH dependent for both modified and non-modified carbon with a greater adsorption at higher pH values except for Cr(III). The enhancement percent of Pb(II), Cd(II) and Cr(III) at different pH values was varied from 28% to 140% with respect to non-modified carbon. The amount of metal ions adsorbed using static regime was 11-40% higher than that with dynamic mode. The difference between adsorption capacities could be attributed to the applied flow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号