首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decomposition rates of different plant parts of maize (Zea mays L.; Gramineae), soybean [Glycine max (L.) Merr.; Leguminosae] and sunflower (Helianthus annuus L.; Compositae) were studied in soils with different physicochemical characteristics, and their contribution to nutrient availability was assessed. Litter decomposition rates were affected by plant species, plant part, and soil characteristics. In site A (SiCL soil), loss of litter mass was highest in soybean followed by sunflower and maize. In site B (Loam soil), loss of litter mass for soybean and sunflower was almost the same, while for maize it was lower. Nutrient release was high when their soil concentration was initially low. The higher the initial concentration of a nutrient in a plant part the greater its release rate. Nutrients, especially N, released from maize litter mass will be available to successive crops for a longer period than for soybean and sunflower, and are unaffected by soil texture. Nutrients are easily removed from sunflower and soybeans and are more likely to be lost through leaching than nutrients from maize.  相似文献   

2.
Traditionally cacao (Theobroma cacao L.) is cultivated under legume shade trees, which produce N-rich litter that improves soil organic matter content, microbial activity, and recycles N to the crop. Arbuscular mycorrhiza forming fungi (AMF) are known to play an important role in plant nutrient uptake, yet their role in plant N uptake from organic residues in tropical agroforestry systems is not clear. We studied root and leaf litter of the legume shade tree Inga edulis Mart. as a source of N for cacao and the importance of AMF colonisation in the uptake of litter N under controlled conditions. Leaf and root litter of I. edulis enriched with 15N was added to cacao pots filled with field soil. Half of the cacao saplings were AMF-inoculated and the soil of non-inoculated saplings was treated with fungicide to suppress AMF. During the 10-week experiment, young cacao leaves were sampled for 15N analyses and at the end of the experiment whole plants were harvested. Microbial populations in the soil were determined using phospholipid fatty acid (PLFA) analysis, and AMF structures in the roots were quantified. Fungicide treatment decreased AMF structures in roots and increased bacterial populations, but did not affect the decomposition rate of either litter type. Inoculated and non-inoculated cacao saplings used 2.6 and 2.1%, respectively, of N added to the pots in leaf litter and 12.1 and 7.1% of N available in root litter indicating that root litter of I. edulis may be a more efficient N source than leaf litter for cacao. Although the fungicide treatment did not completely suppress AMF in non-inoculated pots, it created sufficient contrast in root AMF colonisation for concluding that AMF significantly enhanced cacao N use from both litter types. The role of root litter of shade trees as a N source in agroforestry should not be neglected.  相似文献   

3.
Increasing land degradation has prompted interest in conservation agriculture which includes growing cover crops. Besides providing soil cover, decaying cover crops may release substantial amounts of nutrients. Decomposition, N and P release from winter cover crops [grazing vetch (Vicia darsycarpa), forage peas (Pisum sativum) and oats (Avena sativa)] were assessed for suitability in a cropping system found in the smallholder irrigation sector of South Africa. Nitrogen and P contribution to maize growth by cover crop residues was also estimated. Decrease in mass of cover crop residues was highest in grazing vetch (7% remaining mass after 124 days) followed by forage peas (16%) and lastly oats (40%). Maximum net mineralized N and P were higher for grazing vetch (84.8 mg N/kg; 3.6 mg P/kg) than for forage peas (66.3 mg N/kg; 2.7 mg P/ha) and oats (13.7 mg N/kg; 2.8 mg P/kg). Grazing vetch and forage pea residues resulted in higher N contribution to maize stover than oat residues. Farmers may use grazing vetch for improvement of soil mineral N while oats may result in enhancement of soil organic matter and reduction land degradation because of their slow decomposition. Terminating legume cover crops a month before planting summer crops synchronizes nutrient release from winter-grown legume cover crops and uptake by summer crops.  相似文献   

4.
The decomposition of plant residues has a pivotal role in carbon and nutrient cycles in agricultural ecosystems, where it can contribute to the sustainable management of the crops. In this paper we report a study on the release of C and nutrients during the decomposition of peach abscised leaves in northern Italy. Litter bags containing a representative amount of leaf material were installed under tree canopies either on the soil surface under open field conditions or on the soil surface in pots under partially controlled conditions. Potted leaf litter was pre-labelled with 15N. We observed that in 3 years, peach leaves lost 85% of their initial mass mostly attributable to cellulose decomposition, while new lignin or lignin-like compounds were synthesised during the first stages of the decomposition process. Nutrient dynamics differed depending on the considered element. Nitrogen and sulphur were initially immobilized into the litter to be released only starting after 44 weeks from the beginning of the decomposition. Potassium and magnesium were rapidly released in the winter following leaf abscission, reaching an amount that remained constant up to the end of the trial. Calcium and phosphorus release was slow, but constant throughout the three-year study period. With the only exception of Mg, 80–90% of initial amounts of mineral elements had released from decomposing peach leaves after 3 year from leaf abscission. Since in mature stands leaf litters of different ages coexist on the soil surface 80–90% of the nutrients contained in the abscised leaves are expected to return annually to the soil and potentially be available for subsequent root and/or microbial uptake.  相似文献   

5.
The main objective of this field study was to estimate the total plant uptake of soil mineral N in maize (Zea mays L.) and common bean (Phaseolus vulgaris L.) grown in crop rotations under different N content in Nicaragua. Secondary objectives were to estimate the fraction of the measured soil mineral N content taken up in this way, and to determine how the measured N in plant aboveground parts was related to the total mineral N uptake. A large variation in N content was obtained by using data from fertilisation experiments. Plant total N uptake was estimated as the residual N in a mass balance calculation of soil mineral N. Mineral N content in the top 0–0.3 m soil layer in the field cultivations and in tubes isolated from root uptake, and N content in aboveground plant parts were measured every 30 days. Estimated plant total uptake of soil mineral N varied considerably (2.5–14 g N m−2 30 day−1) over periods and N treatments. The range of variation was similar for maize and bean. The fraction of the soil mineral N that was taken up by the plant daily varied more in maize (about 0.03–0.12 day−1) than in bean (about 0.05–0.08 day−1). Our results suggest that monthly changes in N in aboveground plant parts were linearly related to plant total N uptake during the same period. Aboveground plant N constituted between about 55% and 80% of total uptake of soil mineral N in maize depending on period within season, whereas for bean it was more constant and smaller (about 40%).  相似文献   

6.
In cover cropping systems in the tropics with herbaceous legumes, plant residues are expected to supply nitrogen (N) to non-legume crops during decomposition. Field experiments were carried out to (i) determine the effects of residue quality on decomposition and N release patterns of selected plants in cover cropping systems, (ii) relate the pattern of residue N release to N uptake by maize in cover cropping systems. To study decomposition, litter bags were used and monitored over two maize growing seasons. The residues studied were mucuna (Mucuna pruriens (L.) DC. var. utilis (Wright) Bruck), lablab (Lablab purpureus (L.) Sweet), and leaves and rhizomes of imperata (Imperata cylindrica (L.) Raueschel). Mucuna and lablab decomposed rapidly losing more than 60% of their dry weight within 28 days. In contrast, imperata decomposed slowly with only 25% of its dry matter lost in 56 days. At 28 days, mucuna had released 154 kg N ha-1 in in-situ mulch systems and 87 kg N ha-1 in live- mulch systems representing more than 50% of its N. More than 64% of N in lablab was released within 28 days amounting to 21 to 174 kg N ha-1. Imperata rhizomes mineralized 4 to 14 kg N ha-1 within 14 days, and subsequently immobilized N until 112 days whereas imperata leaves immobilized N throughout the study period. Decomposition and N release rates from the plant residues were most strongly correlated with the (lignin+polyphenol)/N ratio, N content, lignin/N ratio, polyphenol/N ratio, C/N ratio and lignin content of the residues. Relative to the controls, herbaceous legume residues increased maize dry matter yield and N uptake during the two cropping seasons. At 84 days, the maize crop had utilized 13 to 63 kg N ha-1from mucuna representing 13 to 36% of N released, whereas 16 to 25% of N released from mucuna was recovered by the maize crop at 168 days. The first maize crop recovered 9 to 62 kg N ha-1 or 28 to 35% of N released from lablab. However, at 168 days, N uptake by maize in antecedent live-mulched lablab was 32% higher than the quantity of N released, whereas imperata residues generally, resulted in net reduction of maize N uptake.  相似文献   

7.
Crop production in sub-Saharan Africa is constrained by numerous factors including frequent droughts and periods of moisture stress, low soil fertility, and restricted access to mineral fertilisers. A 2 year (2005/6 and 2006/7) field study was conducted in Shurugwi district, central Zimbabwe, to determine the effects of different nutrient resources and two tillage practices on the grain yield of maize (Zea mays L.) and soybean (Glycine max (L.) Merr). Six nutrient resource treatments (control, pit-stored manure, leaf litter, anthill soil, mineral fertiliser, mineral fertiliser plus pit-stored manure) were combined with two tillage practices (conventional tillage and post-emergence tied ridging). Basal fertilisation was done with 0 kg ha−1 as control, 240 kg ha−1 PKS fertiliser, 18 t ha−1 manure, 10 t ha−1 manure plus 240 kg ha−1 PKS fertiliser, 35 t ha−1 leaf litter, 52 t ha−1 anthill soil. About 60 kg N/ha was applied to fertiliser only and fertiliser plus manure treatments as top dressing in the form of ammonium nitrate (34.5%N). A split-plot design was used with nutrient resource as the main plot and tillage practice as the subplot, and five farmers’ fields were used as replicates. Grain yield was determined at physiological maturity (140 and 126 days after planting for maize and soybean, respectively) and adjusted to 12.5% moisture content for maize and 11% for soybean. In the first season (2005/06), addition of different nutrient resources under conventional tillage increased (P < 0.05) maize grain yield by 102–450%, with leaf litter and manure plus fertiliser treatments, giving the lowest (551 kg ha−1) and highest (3,032 kg ha−1) increments, respectively, compared to the control. For each treatment, tied-ridging further increased maize grain yield. For example, for leaf litter, tied-ridging further increased grain yield by 96% indicating the importance of integrating nutrient and water management practices in semi-arid areas where moisture stress is frequent. Despite the low rainfall and extended dry spells in the second season, addition of the different nutrient resources still increased yield which was further increased by tied-ridging in most treatments. Besides providing grain, soybean had higher residual effects on the following maize crop compared to Crotalaria gramiana, a green manure. It was concluded that the highest benefits of tied-ridging, in terms of grain yield, were realised when cattle manure was combined with mineral fertiliser, both of which are available to resource-endowed households. Besides marginally increasing yield, leaf litter and anthill which represent resources that can be accessed by very poor households, have a positive effect of the soil chemical environment.  相似文献   

8.
Understanding the interaction of macro- and micronutrients is a prerequisite to targeting nutrient balance in crop production. A 3-year field study was conducted to determine mineral nutrient uptake of maize hybrids with N fertilizer application under different rotation systems. The experiment was arranged in a split-plot design with rotation [maize-alfalfa (MA), maize-soybean (MS), and continuous maize (MM)] by N rate (0, 50, 100 and 150 kg N ha?1) as the mainplot and hybrid as the subplot. Two additional treatments (200 and 250 kg N ha?1) were tested in MM. Maize plant total Mg, Zn, and Cu content were in the order: MA?>?MS?>?MM. Plant Fe uptake was the lowest in MA and not affected by N input. The increased Cu uptake with increasing N rates indicated the synergism of these two nutrients, whereas dilution effects of N application on stover Zn and Mg concentrations were recorded. Rotation systems and N rates interactively affected nutrient harvest index and internal efficiency of Zn, Mg, Fe, and Cu. Relationships of plant N with Cu and Mg concentrations, and N with Zn, Mg, and Cu content at the V6 stage were established, but they were not necessarily preserved at maturity due to the progressive synergistic and dilution effects. The findings of nutrient uptake of Cu, Zn, Mg and Fe and their relationships with N nutrition in maize with stacked transgenic traits are important for developing best management practices to achieve concurrent improvements in nutrient use efficiency and crop productivity.  相似文献   

9.
Sustainable management of mineral nutrition in vineyards, as well as in other fruit plantations, should aim at exploiting the use of internal sources of nutrients, in order to reduce the need for external nutrient inputs. In this paper we explore the potential of the grassed alleys to provide nutrients to the vines. We followed for one vegetative season the decomposition of ryegrass and clover, frequently present as floor vegetation in vineyards, using litter bags filled with 15N-enriched grass material. In addition, we quantified the amount of nitrogen (N) transferred from the decomposing litter to field-grown grapevines. Ryegrass and clover had a relatively rapid decomposition rate, with a loss of C approaching 80% in only 16 weeks. The release of nutrients was particularly fast for potassium (95% in 16 weeks) followed by nitrogen (80%), calcium (70–80%), phosphorous (65–85%), magnesium (70–75%), and sulfur (60–70%). In spite of the rapid release of N from decomposing material, the N uptake by grapevines was on average less than 4% of the initial amount of N present in the litter of ryegrass and clover. Even if N release during the decomposition of mowed perennial ryegrass and white clover little contributed to the N nutrition of grapevine in the same growing season, most N from mowed grassed was still recovered in the soil.  相似文献   

10.
Smallholder land productivity in drylands can be increased by optimizing locally available resources, through nutrient enhancement and water conservation. In this study, we investigated the effect of tillage system, organic resource and chemical nitrogen fertilizer application on maize productivity in a sandy soil in eastern Kenya over four seasons. The objectives were to (1) determine effects of different tillage-organic resource combinations on soil structure and crop yield, (2) determine optimum organic–inorganic nutrient combinations for arid and semi-arid environments in Kenya and, (3) assess partial nutrient budgets of different soil, water and nutrient management practices using nutrient inflows and outflows. This experiment, initiated in the short rainy season of 2005, was a split plot design with 7 treatments involving combinations of tillage (tied-ridges, conventional tillage and no-till) and organic resource (1 t ha−1 manure + 1 t ha−1 crop residue and; 2 t ha−1 of manure (no crop residue) in the main plots. Chemical nitrogen fertilizer at 0 and 60 kg N ha−1 was used in sub-plots. Although average yield in no-till was by 30–65% lower than in conventional and tied-ridges during the initial two seasons, it achieved 7–40% higher yields than these tillage systems by season four. Combined application of 1 t ha−1 of crop residue and 1 t ha−1 of manure increased maize yield over sole application of manure at 2 t ha−1 by between 17 and 51% depending on the tillage system, for treatments without inorganic N fertilizer. Cumulative nutrients in harvested maize in the four seasons ranged from 77 to 196 kg N ha−1, 12 to 27 kg P ha−1 and 102 to 191 kg K ha−1, representing 23 and 62% of applied N in treatments with and without mineral fertilizer N respectively, 10% of applied P and 35% of applied K. Chemical nitrogen fertilizer application increased maize yields by 17–94%; the increases were significant in the first 3 seasons (P < 0.05). Tillage had significant effect on soil macro- (>2 mm) and micro-aggregates fractions (<250 μm >53 μm: P < 0.05), with aggregation indices following the order no-till > tied-ridges > conventional tillage. Also, combining crop residue and manure increased large macro-aggregates by 1.4–4.0 g 100 g−1 soil above manure only treatments. We conclude that even with modest organic resource application, and depending on the number of seasons of use, conservation tillage systems such as tied-ridges and no-till can be effective in improving crop yield, nutrient uptake and soil structure and that farmers are better off applying 1 t ha−1 each of crop residue and manure rather than sole manure.  相似文献   

11.
The release of mineral-N in soil from plant residues is regulated by their ‘quality’ or chemical composition. Legume materials used by farmers in southern Africa are often in the form of litter with N concentration <2%. We investigated the decomposition of Sesbania sesban and Acacia angustissima litter in the field using litterbags, and N mineralization of a range of legume materials using a leaching tube incubation method in the laboratory. The mass loss of the litter could be described using a modified exponential decay model: Y = (Y 0Q)ekt + Q. The relative decomposition constants for Sesbania and Acacia litter were 0.053 and 0.039 d−1, respectively. The % N mineralized from fresh Sesbania prunings was 55% compared with only 27% for the Sesbania litter after 120 days of incubation under leaching conditions. During the same period, fresh prunings of Acacia released only 12% of the added N while Acacia litter released 9%. Despite the large differences in N concentration between Acacia prunings and its litter, the total mineralized N was similar, as mineralization from prunings was depressed by the highly active polyphenols. While N supply may be poor, these slow decomposing litter materials are potentially useful for maintaining soil organic matter in smallholder farms. In two field experiments with contrasting soil texture, Sesbania, Acacia and Cajanus produced large amounts of biomass (>5 Mg ha−1) and improved N cycling significantly (>150 kg N ha−1) on the clay loam soil, but adapted poorly on the sandier soil. There was a rapid N accumulation in the topsoil at the beginning of the rains in plots where large amounts of Sesbania or Acacia biomass had been incorporated. Despite the wide differences in resource quality between these two, there was virtually no difference in N availability in the field as this was, among other factors, confounded by the quantity of N added. A substantial amount of the nitrate was leached to greater than 0.4 m depth within a three-week period. Also, the incidence of pests in the first season, and drought in the second season resulted in poor nitrogen use efficiency. Our measurements of gaseous N losses in the field confirmed that N2O emissions were <0.5 kg N ha−1. As we had measurements of all major N flows, we were able to construct overall N budgets for the improved fallow – maize rotation systems. These budgets indicated that, in a normal rainfall season with no major pest problems, reducing nitrate leaching would be the single largest challenge to increased N recovery of added organic N in the light textured soils.  相似文献   

12.
An important criterium in selecting species for alley cropping is themineralization pattern of their prunings. This study determined effects of 5years of hedgerow pruning applications on soil organic C and total N at threelocations in Haiti and mineralization patterns from soil amended with theprunings during an incubation using micro-lysimeters. Soils (0–5cm) under 5 hedgerows were collected at each site and analyzed fororganic C and total N. In the laboratory, ground leaves and stems (<1cm diameter) of the hedgerow species were mixed with soil at ratesof 3 and 1.5 Mg ha–1, respectively, andaerobically incubated in the dark at 25 °C. A non-amended soilwas used as control. Soils were leached to determine mineral N at 1, 3, 7, 14,28, 42, 84 and 120 days of incubation. Evolved CO2 was measuredfollowing each leaching procedure. At the calcareous site, application ofprunings from Leucaena leucocephala (Lam.) De Wit andDelonix regia (Boj. ex Hook. Raf.) resulted in 23 and 13%higher soil N than the control, respectively, after 5 years. There were nodifferences in total N at the other sites but soil N was highest underLeucaena hybrid and Acaciaangustissima (Mill.) Kuntze, respectively at the basaltic and highelevation sites. Soils under D. regia (calcareous) andA. angustissima and Leucaena hybrid(high elevation) had higher organic C than the respective controls. Carbon andNmineralization and C turnover were highest when soils were amended with leavesof Leucaena diversifolia (Schlecht.) Benth (calcareous andbasaltic soils) and A. angustissima (high elevation) andlowest in non-amended control soils. Stem-amended soils showed differences in Cmineralization for calcareous and high elevation soils whereas N mineralizationwas similar among treatments within sites. Carbon and N mineralization (highelevation soil) correlated positively with N concentrations of leaf prunings.Amendments with leaf prunings increased soil C and N mineralization andturnoverrates, suggesting greater nutrient availability for the crop during a shortperiod than in non-amended control soils.  相似文献   

13.
Soil fertility replenishment is a critical factor that many farmers in the tropical American hillsides have to cope with to increase food crop production. The effect of three planted fallow systems (Calliandra houstoniana-CAL, Indigofera zollingeriana-IND, Tithonia diversifolia-TTH) and a crop rotation (maize/beans-ROT) on soil nitrogen mineralization, organic matter and phosphorus fractions was compared to the usual practice of allowing natural regeneration of native vegetation or natural fallow management (NAT). Studies were conducted on severely degraded Colombian volcanic-ash soils, 28 months after fallow establishment, at two on-farm experimental sites (BM1 and BM2) in the Cauca Department. Tithonia diversifolia had a significantly higher contribution to exchangeable Ca, K and Mg as well as B and Zn; the order of soil nutrient contribution was TTH > CAL > IND > NAT > ROT. On the other hand, lND had significantly higher soil NO3–N at both experimental farms as compared to all the other fallow system treatments. For the readily available P fraction, CAL and ROT had significantly higher H2O–Po and resin-Pi, respectively, in the 0–5 cm soil layer; whereas TTH showed significantly higher values for both H2O–Po and resin-Pi in the 5–10 cm soil layer. Significant effects were observed on the weights of the soil organic matter fractions which decreased in the order LL (Ludox light) > LM (Ludox intermediate) > LH (Ludox heavy). Indigofera zollingeriana showed greater C, N and P in the soil organic matter fractions than all the other fallow treatments, with NAT having the lowest values. It is concluded that planted fallows can restore soil fertility more rapidly than natural fallows.  相似文献   

14.
Conservation tillage and judicious use of animal manures as fertilizers can make significant contributions for sustainable food production in the twenty-first century. Identifying and understanding the many interactions occurring within agricultural systems is fundamental for accomplishing this feat. This paper synthesizes 14 years of research results from a study that began in the early 1990s in which researchers from USDA-ARS and the University of Georgia investigated cropping system influences on nutrient management under natural rainfall. Increases in C and N with no-till resulted in improved soil structure that increased infiltration rate and soil water availability. Biological activity as indicated by earthworms was greater with no-till and poultry litter (PL). In all but the very driest year, yields of cotton and corn increased on average 10–27% with no-till and 32–42% with combination of no-till and PL. On the other hand soil nutrient accumulation, particularly P and Zn from long-term use of poultry litter in corn production, reached excessive levels and could present environmental risks. Drainage increased in no-till raising the risk of leaching of nutrients into the soil profile. However, runoff decreased in no-till and the presence of a rye cover crop during the winter reduced the leaching losses of N compared to no cover crop. During cotton production under relative drought, no-till and poultry litter led to somewhat elevated dissolved phosphorus concentration in runoff, and fluometuron was detected in runoff and drainage while pendimethalin was not. Fecal indicator bacteria (Escherichia coli and fecal enterococci), and the hormones estradiol and testosterone were observed in drainage and runoff but concentrations were similar across all treatments. By conducting the study for an extended period under natural environmental conditions, we were able to highlight real risks and potentials of the contrasting cropping systems. While 6 out of 14 years of relative drought might have limited the water quality response of treatments, such droughts are common features of the weather pattern in the region. Even then, use of no-till as the predominant tillage system was supported by improved yields. Fertilizer management, especially crop N need-based use of PL, requires closer monitoring to insure that production advantages of no-till and poultry litter are not offset by concerns with environmental risks. Long-term research requires sustained resource inputs to answer critical questions of environmental risk and emerging unknown issues.  相似文献   

15.
A field experiment was conducted from 1995 to 2006 on a Dark Brown Chernozem (Typic Boroll) loam soil at Scott, Saskatchewan, Canada to determine the influence of input level and crop diversity on accumulation and distribution of nitrate-N and extractable P in the soil profile, and soil pH, dry aggregation, organic C and N, and nutrient balance sheets in the second 6-year rotation cycle (2001–2006). Treatments were combinations of three input levels (organic input under conventional tillage—ORG; reduced input under no-till—RED; and high input under conventional tillage—HIGH), three crop diversities (fallow-based rotations with low crop diversity—LOW; diversified rotations using annual cereal, oilseed and pulse grain crops—DAG; and diversified rotations using annual grain and perennial forage crops—DAP), and six crop phases including green manure (GM), chem-fallow or tilled-fallow (F). Amount of nitrate-N in 0-240 cm soil was usually highest under the HIGH input-LOW crop diversity treatment and lowest under the ORG input-DAP crop diversity treatment. The distribution of nitrate-N in various soil depths suggested downward movement of nitrate-N up to 240 cm depth, especially with LOW crop diversity compared to DAP crop diversity, and with HIGH input. In some years, the ORG input systems had higher nitrate-N than the RED or HIGH input systems, which was attributed to low extractable P in soil for optimum crop growth and reduced nutrient uptake with ORG input management. Extractable P in soil was higher by a small margin for HIGH or RED input relative to ORG input in the 0–15 cm layer, suggesting little downward movement of P. Crop diversity did not affect extractable soil P due to the low baseline levels of P in this soil. The proportion of fine dry aggregates (<1.3 mm, erodible fraction) in 0–5 cm soil was highest with LOW crop diversity-HIGH input system, and lowest with DAG diversity-RED input system. The opposite was true for large aggregates (>12.7 mm). Wet aggregate stability was higher for RED input compared to ORG and HIGH input, which was attributed to the increase in the concentration of organic C in aggregates in the RED input system. Amount of light fraction organic matter (LFOM), light fraction organic C (LFOC) and light fraction organic N (LFON) in 0–15 cm soil was higher for RED input compared to ORG and HIGH inputs, and higher for DAG and DAP crop diversities than for LOW crop diversity. Soil N and P were usually deficient under ORG input management, but large amounts of N and P were unaccounted for, or in surplus, under RED and HIGH inputs, despite a marked increase in plant N and P uptake and crop yield compared to ORG input. Overall, our findings suggest that soil quality can be improved and nutrient accumulation in the soil profile can be minimized by increasing cropping frequency, reducing/eliminating tillage, and using appropriate combinations of fertilizer input and diversified cropping.  相似文献   

16.
The influence of litter quality on plant litter decomposition rates is a crucial aspect of the soils C cycle. In grassland ecosystems, leaf litter, which is not removed either by herbivores or by mowing, returns to soil after the senescence process (brown litter). In grassland managed by mowing, another significant proportion of litter returns to the soil before senescence through harvesting losses (green litter). We hypothesized that changes in leaf tissue quality due to the senescence process would lead to contrasting decomposition dynamics of brown litter compared to green litter. Our conceptual approach included the monitoring of decomposition of green (fresh leaves) and brown litter (dead leaves, still attached to the plant) of three different grassland species (Lolium perenne, Festuca arundinacea and Dactylis glomerata) during a 1 year field incubation. After 0, 2, 4, 20 and 44 weeks, we retrieved the litterbags and analysed the remaining material for carbon and nitrogen content and stable isotope composition. Additionally, we determined the lignin content and composition by CuO oxidation and the non-cellulosic neutral carbohydrate content and composition after TFA hydrolysis. As expected, green litter, being higher in N and soluble compounds, while showing a lower C:N ratio and lower lignin contents compared to brown litter, was degraded at a higher rate. Carbon decomposition kinetics suggests that both leaf litter types consist of two pools with contrasting turnover times. The size of the active pool was related to the initial content of soluble plant litter compounds and the size of the recalcitrant pool was related to the lignin to N ratio of initial plant material. More lignin was lost from green litter compared to brown litter. P-coumaryl-type lignin units were decomposed at a higher rate than vanillyl and syringyl units. Total non cellulosic polysaccharide content showed little changes for both litter types. In contrast, the ratios of hexoses/pentoses (C6/C5) and desoxy sugars/pentoses (desoxy/C5) increased during decomposition of green litter only. This is an indication for an increasing contribution of microbial derived compounds being consistant with the higher decomposition rate of this material. Our results showed that grassland management (grazing versus mowing) could influence soil carbon sequestration through different proportions of green and brown litter returned to soil.  相似文献   

17.
Green leaf manuring with prunings of Leucaena leucocephala is regarded as a useful source of N to plants but the actual substitution of N fertilizer, release and recovery of N as well as effects on soil fertility are not adequately studied. The present studies investigated the effect of sole and combined use of Leucaena prunings and urea N fertilizer in different proportions on productivity, profitability, N uptake and balance in maize (Zea mays)–wheat (Triticum aestivum) cropping system at New Delhi during 2002–2003 and 2003–2004. Varying quantities of Leucaena green leaf biomass containing 3.83–4.25% N (18.2–20.5 C:N ratio) were applied to provide 0, 25, 50, 75 and 100% of recommended N (120 kg ha−1) to both maize and wheat before sowing. In general, direct application of urea N increased the productivity of both crops more than Leucaena green leaf manure, but the reverse was true for the residual effect of these sources. The productivity of maize increased progressively with increasing proportions of N through urea fertilizer and was 2.41–2.52 t ha−1 with 60 kg N ha−1 each applied through Leucaena and urea, which was at par with that obtained with 120 kg N ha−1 through urea alone (2.56–2.74 t ha−1). Similarly, wheat yield was also near maximum (4.46–5.11 t ha−1) when equal amounts of N were substituted through Leucaena and urea. Residual effects were obtained on the following crops and were significant when greater quantity of N (>50%) was substituted through Leucaena. Nitrogen uptake and recovery were also maximum with urea N alone, and N recovery was higher in maize (33.4–42.1%) than in wheat (27.3–29.8%). However, recovery of residual N in the following crop was more from Leucaena N alone (8.5–10.3%) than from urea fertilizer (1.7–3.8%). Residual soil fertility in terms of organic C and KMnO4 oxidizable N showed improvement with addition of Leucaena prunings, which led to a positive N balance at the end of second cropping cycle. Net returns were considerably higher with wheat than with maize, and were comparatively lower with greater proportion of Leucaena because of its higher cost. Nonetheless, it was beneficial to apply Leucaena and urea on equal N basis for higher productivity and sustainability of this cereal-based cropping system.  相似文献   

18.
Application of chemical fertilizers and farmyard manure affects crop productivity and improves nutrient cycling within soil–plant systems, but the magnitude varies with soil-climatic conditions. A long-term (1982–2004) field experiment was conducted to investigate the effects of nitrogen (N), phosphorus (P), and potassium (K) fertilizers and farmyard swine manure (M) on seed and straw yield, protein concentration, and N uptake in the seed and straw of 19-year winter wheat (Triticum aestivum L.) and four-year oilseed (three-year canola, Brassica napus L. in 1987, 2000 and 2003; one-year flax, Linum usitatisimum L. in 1991), accumulation of nitrate-N (NO3-N) in the soil profile (0–210 cm), and N balance sheet on a Huangmian soil (calcaric cambisols, FAO) near Tianshui, Gansu, China. The two main plot treatments were without and with farmyard swine manure (M); sub-plot treatments were control (Ck), N, NP, and NPK.␣The average seed yield decreased in the order MNPK ≥ MNP > MN ≥ NPK ≥ NP > M > N > Ck. The average effect of manure and fertilizers on seed yield was in the order M > N > P > K. The seed yield increase was 20.5% for M, 17.8% for N, 14.2% for P, and 2.9 % for K treatment. Seed yield response to fertilizers was much greater for N and P than for K, and it was much greater for no manure than for manure treatment. The response of straw yield to fertilization treatments was usually similar to that of seed yield. The N fertilizer and manure significantly increased protein concentration and N uptake plant. From the standpoint of increasing crop yield and seed quality, MNPK was the best fertilization strategy. Annual applications of N fertilizer and manure for 23 successive years had a marked effect on NO3-N accumulation in the 0–210 cm soil profile. Accumulation of NO3-N in the deeper soil layers with application of N fertilizer and manure is regarded as a potential danger, because of pollution of the soil environment and of groundwater. Application of N fertilizer in combination with P and/or K fertilizers reduced residual soil NO3-N significantly compared with N fertilizer alone in both no manure and manure plots. The findings suggest that integrated and balanced application of N, P, and K fertilizers and␣manure at proper rates is important for protecting soil and groundwater from potential NO3-N pollution and for maintaining high crop productivity in the rainfed region of Northwestern China.  相似文献   

19.
The sustainability of agroforestry systems in Amazonia was assessed from their litter dynamics and decomposition. Litter fall and litter stocks were determined from July 1997 to March 1999 in four sites in central Amazonia: a primary rainforest, a 13-year-old secondary forest, and two sites of a polyculture forestry system which consisted of four planted tree species of commercial use amidst upcoming secondary growth. The average annual litter fall in the undisturbed primary rainforest (FLO) was 8.4 t ha–1 year–1, which is within the range of litter fall in other rainforests in the region. It was similar in one of the two polyculture sites (8.3 t ha–1 year–1), but lower in the secondary forest and in the second polyculture site. In the litter fall in secondary forest and agroforestry sites, the leaf portion was higher (76–82% of total litter fall) than in FLO, due to reduced fine matter and wood fall. Leaf litter fall variability was much lower in the plantation sites than in the forests, which is explained by the much more homogeneous stand structure of the plantations. The quality of the produced litter, measured as C/N ratio, differed significantly between the primary forest site and one polyculture and the secondary forest site. The cumulative input of nitrogen through litter fall was 144 kg ha–1 year–1 in FLO, and 91–112 kg ha–1 year–1 in the polycultures and the secondary forest. Litter fall was not correlated with soil parameters, but had a significant linear regression with canopy closure. For the primary rainforest, litter fall was also (inversely) correlated with monthly rainfall. Litter fall was higher in the first year (1997–1998; an El Niño period) than in 1998–1999. Litter stocks on the forest floor were highest in the secondary forest (24.7 t ha–1), and much lower in the polyculture sites (15.1–16.2 t ha–1) and the primary forest (12.0 t ha–1). There were no differences in the relative N content (C/N ratio) of the litter stocks between the sites, but the larger stocks led to higher absolute N contents in the litter layer in the secondary forest. From the monthly values of litter stocks (S) and litter fall (P), the decomposition coefficient k e=P/S was calculated, which was, on average, highest for the primary forest (0.059), followed by the polyculture systems (0.040–0.042), and by the secondary forest (0.024). Thus, due to low decomposition rates, the secondary forest site showed large litter accumulations in spite of a relatively low litter fall. In contrast, the primary forest showed high litter fall but low stocks, due to high decomposition rates. The decomposition coefficients of the polyculture systems ranged between the primary and the secondary forest. The reduced decomposition rates in the man-managed agroecosystems indicate quantitative and/or qualitative changes in the decomposer communities of these systems that lead to a higher build-up of litter stocks on the forest floor. However, the decomposer systems in the polyculture sites still were more functional than in the site of non-managed secondary growth. Thus, from a soil biological viewpoint, ecologically sustainable low-input agroforestry in Amazonia will benefit from the application of these polyculture systems.  相似文献   

20.
Cultivation of genetically modified crops may have several direct and indirect effects on soil ecosystem processes, such as soil nitrogen (N) transformations. Field studies were initiated in Northeast Missouri in 2002 and 2003 to determine grain and biomass yields and the effects of application of crop residues from five Bt maize hybrids and their respective non-Bt isolines on soil inorganic N under tilled and no-till conditions in a maize-soybean rotation. A separate aerobic incubation study examined soil N mineralization from residue components (leaves, stems, roots) of one Bt maize hybrid and its non-Bt isoline in soils of varying soil textural class. Three Bt maize hybrids produced 13–23% greater grain yields than the non-Bt isolines. Generally no differences in leaf and stem tissues composition and biomass was observed between Bt and non-Bt maize varieties. Additionally, no differences were observed in cumulative N mineralization from Bt and non-Bt maize residues, except for non-Bt maize roots that mineralized 2.7 times more N than Bt maize roots in silt loam soil. Incorporation of Bt residues in the field did not significantly affect soil inorganic N under tilled or no-till conditions. Overall Bt and non-Bt maize residues did not differ in their effect on N dynamics in laboratory and field studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号