首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Zhao R  Novak JT  Goldsmith CD 《Water research》2012,46(12):3837-3848
A cost effective and widely applied approach for landfill leachate disposal is to discharge it to a municipal wastewater treatment plant (WWTP). The recalcitrant nature of leachate organics and the impact on the downstream WWTPs were comprehensively investigated in this study. Size fractionation by ultrafiltration (UF) and microfiltration (MF) was employed in conjunction with various analyses (TOC, COD, nitrogen species and UV254 absorbance) on raw and biologically treated landfill leachates to provide insight into biological treatability. Overall, landfill leachate organics showed bio-refractory properties. Less than half of the organic matter, measured as total organic carbon (TOC), could be removed in the biological processes examined. Size distribution data showed that the <1 thousand Daltons (kDa) fraction is dominant in most untreated and treated landfill leachates, indicating difficulties for membrane treatment. Also, most removal occurred for the <1 kDa fraction in the biological processes, while the intermediate size fractions increased slightly. This may be caused by bio-flocculation and/or partial degradation of larger molecular weight fractions. Organic nitrogen was investigated in this study as one of the first explorations for landfill leachates. Organic nitrogen in landfill leachates was more bio-refractory than other organic matter. UV quenching by landfill leachates was also investigated since it interferes with the UV disinfection at WWTPs. The combination of activated carbon and activated sludge (PACT) showed some effectiveness for reducing UV quenching, indicating that carbon adsorption is a potential method for removal of UV quenching substances. Fourier transform Infrared (FT/IR) data showed that aromatic groups are responsible for the UV quenching phenomenon.  相似文献   

2.
Landfill, a matured and economically appealing technology, is the ultimate approach for the management of municipal solid wastes. However, the inevitable generation of leachate from landfill requires further treatment. Among the various leachate treatment technologies available, advanced oxidation processes (AOPs) are among powerful methods to deal with the refractory organic constituents, and the Fenton reagent has evolved as one promising AOPs for the treatment of leachates. Particularly, the combination of UV-radiation with Fenton's reagent has been reported to be a method that allows both the photo-regeneration of Fe2+ and photo-decarboxylation of ferric carboxylates. In this study, Fenton and photo-Fenton processes were fine tuned for the treatment of leachates from the Colmenar Viejo (Madrid, Spain) Landfill. Results showed that it is possible to define a set of conditions under which the same COD and TOC removals (≈ 70%) could be achieved with both the conventional and photo-Fenton processes. But Fenton process generated an important quantity of iron sludge, which will require further disposal, when performed under optimal COD removal conditions. Furthermore conventional Fenton process was able to achieve slightly over an 80% COD removal from a “young” leachate, while for “old” and ”mixed” leachates was close to a 70%. The main advantage showed by the photo-assisted Fenton treatment of landfill leachate was that it consumed 32 times less iron and produced 25 times less sludge volume yielding the same COD removal results than a conventional Fenton treatment.  相似文献   

3.
Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill   总被引:18,自引:0,他引:18  
He PJ  Xue JF  Shao LM  Li GJ  Lee DJ 《Water research》2006,40(7):1465-1473
Landfill leachate needs sufficient treatment before safe disposal. Bioreactor landfill technology could effectively degrade the organic matters in recirculated leachate, hence leaving a leachate stream of low biodegradability. This study characterized the dissolved organic matter (DOM) in the leachate from simulated bioreactor landfill columns with or without presence of trace oxygen. The removal efficiencies of this DOM using coagulation-sedimentation or electrolysis processes were demonstrated. Recirculated leachates were sampled from the simulated landfill columns applying conventional mode, intermittent-aeration mode, and natural aeration mode, whose DOM was fractionated into humic acids (HA), fulvic acids (FA) and hydrophilic fractions (HyI) by the XAD-8 resin combined with the cation exchange resin method. The recirculated leachate had low BOD/COD ratio, high humic substances contents, and high aromatic content. Their HA fraction comprised mainly large molecules (>10 k Da), while the FA and HyI were composed of smaller molecules (<50 k and <4 k Da, respectively). With the presence of oxygen, the TOC contents and the contents of HA, FA and HyI in leachate reduced, with FA and HyI fractions of molecular weight (MW) lower than 4 k Da more readily degraded. The organic matters left in leachates from intermittent-aeration mode and natural aeration mode were of low biodegradability. It was tested in the following sections the effects of coagulation-sedimentation process and of electrolysis process on the removal of residual DOM in recirculated leachate. Coagulation-sedimentation tests revealed that poly ferric sulphate (PFS) could remove more COD (58.1%) from leachate than polyaluminum chloride (PACl) (22.9%), particularly on the HA fraction with MW>10 k Da. Coagulation-sedimentation could not remove most of HyI in leachate. Furthermore, the corresponding BOD/COD ratio was not improved through coagulation. Electrolysis test could also effectively removed HA of MW>10 k Da. However, the biodegradability of treated effluent considerably was improved. The electrolysis could decompose high MW substances and increase biodegradability of recirculated leachate from bioreactor landfill.  相似文献   

4.
投粉末活性炭SBR处理垃圾渗滤液   总被引:2,自引:1,他引:2  
结合小型垃圾填埋场渗滤液中有机物浓度较低的特点及简化工艺的要求,以南京市某垃圾填埋场渗滤液为试验对象,经氨吹脱后采用投粉末活性炭SBR/混凝沉淀工艺进行处理,探讨了粉末活性炭投量、泥龄等参数对处理效果的影响.结果表明,对COD、BOD5、NH3-N的总去除率分别为88.4%、93.4%、76.9%,出水水质达到了<生活垃圾填埋场污染控制标准>(GB16889-1997)的Ⅱ级标准.  相似文献   

5.
Leachates produced at the La Zoreda landfill in Asturias, Spain, were recirculated through a simulated landfill pilot plant. Prior to recirculation, three loads of different amounts of Municipal Solid Waste (MSW) were added to the plant, forming in this way consecutive layers. When anaerobic digestion was almost completed, the leachates from the landfill were recirculated. After recirculation, a new load of MSW was added and two new recirculations were carried out. The organic load of the three landfill leachates recirculated through the anaerobic pilot plant decreased from initial values of 5108, 3782 and 2560 mg/l to values of between 1500 and 1600 mg/l. Despite achieving reductions in the organic load of the leachate, a residual organic load still remained that was composed of non-biodegradable organic constituents such as humic substances. Similar values of the chemical oxygen demand (COD) were obtained when the landfill leachate was treated by a pressurised anoxic-aerobic process followed by ultrafiltration. After recirculation through the pilot plant, physico-chemical treatment was carried out to reduce the COD of the leachate. The pH of the leachate was decreased to a value of 1.5 to precipitate the humic fraction, obtaining a reduction in COD of about 13.5%. The supernatant liquid was treated with activated carbon and different resins, XAD-8, XAD-4 and IR-120. Activated carbon presented the highest adsorption capacities, obtaining COD values for the treated leachate in the order of 200mg/l. Similar results were obtained when treating with activated carbon, the leachate from the biological treatment plant at the La Zoreda landfill; in this case without decreasing the pH.  相似文献   

6.
Landfill leachate is a complex wastewater which the composition and concentration of contaminants are influenced by the type of waste deposited and the age of landfill. In the last years, several processes or process combinations were developed and tested to reach requirements for the discharge of leachate. Among the new processes, membrane processes are considered as promising: reverse osmosis is one of the most widely used treatment in the Northwestern European countries and nanofiltration is gained in popularity during the last 5 years. Successful application of membrane technology for the treatment of landfill leachates, requires efficient control of membrane fouling. Two organic membranes of nanofiltration were used for pilot-scale testing. Leachates were subject to several pretreatments (pH modification, prefiltration and coagulation with FeCl3) to remove potential foulants including dissolved organic and inorganic substances, colloidal and suspended particles. These pretreatments do not enhance the performances (retention and permeation flux) of membranes because the pH range and the presence of Fe3+ ions contribute greatly to change the characteristics of organic matter and the surface charges of membranes. However, the results show that nanofiltration is sufficient to eliminate refractory COD, the permeates have a COD lower than the requirements for discharge.  相似文献   

7.
The Bordo Poniente sanitary landfill in Mexico City currently receives 11,500 ton/day of solid wastes. The landfill has been in operation since 1985, in what was formerly Texcoco Lake, now a dried-up lakebed. The physico-chemical characteristics of the leachate generated by this particular landfill are altered by the incorporation of freatic saline water present in the area. This paper reports the results from a study evaluating coagulation and ozonation as alternative processes for removing and transforming recalcitrant organic matter from stabilized saline landfill leachate. Coagulation with ferric sulfate was found to remove up to 67% of COD and 96% of leachate color. The remaining 33% COD was removed with ozone. Recalcitrant organic matter removal by ozonation is limited by the reaction kinetic due mainly to ozone's low reactivity with the organic compounds present in the leachates (amines, amides, alcohols, aliphatic compounds, and carboxylic acids). However, ozone contributes greatly to changing the recalcitrant characteristics of organic matter. Leachate biodegradability was found to be significantly enhanced through ozonation: BOD(5) values reach 265%, and the BOD(5)/COD ratio increases from 0.003 to 0.015. Infrared analysis of ozonated leachates shows that the main by-products of recalcitrant organic matter ozonation are an increase in the hydroxyl and carboxylic groups, and the presence of aldehydes groups.  相似文献   

8.
百色市生活垃圾卫生填埋场渗滤液处理工程设计   总被引:2,自引:0,他引:2  
百色市生活垃圾卫生填埋场渗滤液处理采用了UASB/MBR/活性炭过滤组合工艺。介绍了工艺的设计参数、特点、运行情况和技术经济参数,结果表明,该工艺出水水质达到了《生活垃圾填埋污染控制标准》(GB16889—1997)的二级标准。  相似文献   

9.
The slow leaching of nitrogen from solid waste in landfills, resulting in high concentrations of ammonia in the landfill leachate, may last for several decades. The removal of nitrogen from leachate is desirable as nitrogen can trigger eutrophication in lakes and rivers. In the present study, a low-cost nitrification-denitrification process was developed to reduce nitrogen load especially in leachates from small landfills. Nitrification was studied in laboratory and on-site pilot aerobic biofilters with waste materials as filter media (crushed brick in upflow filters and bulking agent of compost in a downflow filter) while denitrification was studied in a laboratory anoxic/anaerobic column filled with landfill waste. In the laboratory nitrification filters, start-up of nitrification took less than 3 weeks and over 90% nitrification of leachate (NH4-N between 60 and 170mg N l(-1), COD between 230 and 1,300 mg l(-1)) was obtained with loading rates between 100 and 130 mgNH4-N l(-1) d at 25 degrees C. In an on-site pilot study a level of nitrification of leachate (NH4-N between 160 and 270 mg N l(-1), COD between 1,300 and 1,600 mg l(-1)) above 90% was achieved in a crushed brick biofilter with a loading rate of 50mg NH4-N l(-1) d even at temperatures as low as 5-10 degrees C. Ammonium concentrations in all biofilter effluents were usually below the detection limit. In the denitrification column. denitrification started within 2 weeks and total oxidised nitrogen in nitrified leachate (TON between 50 and 150mg N l(-1)) usually declined below the detection limit at 25 degrees C, whereas some ammonium, probably originating from the landfill waste used in the column, was detected in the effluent. No adverse effect was observed on the methanation of waste in the denitrification column with a loading rate of 3.8 g TON-N/t-TS(waste) d. In conclusion, nitrification in a low-cost biofilter followed by denitrification in a landfill body appears applicable for the removal of nitrogen in landfill leachate in colder climates.  相似文献   

10.
K. Knox  P.H. Jones 《Water research》1979,13(9):839-846
The complexation of cadmium by organic components of sanitary landfill leachates was investigated using ion-exchange and specific ion electrode methods. Four Southern Ontario leachates were all found to be capable of complexing cadmium, to varying degrees. The complexing ability associated with certain molecular weight fractions was studied. In one leachate, complexation was mainly attributed to low (<500) molecular weight compounds. Their behaviour was consistent with that of simple carboxylic acids. In another leachate, high (> 10,000) molecular weight compounds contributed significantly to complexation. Their behaviour suggested that they might contain phenolic hydroxyl groups having a stability constant towards cadmium of the order of 105. It was concluded that the role of complexation in determining the fate of metals in sanitary landfill leachates depended upon several factors whose importance had not yet been adequately investigated or reported in the literature.  相似文献   

11.
Some landfill site operators use wastewater treatment plants for the discharge of complex leachate waste. However, for the water company involved in managing the wastewater plant, leachates can pose a problem to the quality of the effluent, due to the high levels of Chemical Oxygen Demand (COD), ammonia and inorganic metal constituents. Electrochemical oxidation of landfill leachate has been successfully used by researchers(1,2,3,4) with current densities of 5 to 100 mA/cm2. A new laboratory system has been developed which utilises a low current density of 2.42 mA/cm2 and the performance has been evaluated with synthetic and 'real' landfill leachates from 2 wastewater sites.
This system reduces COD of synthetic mixtures by 58%, with complete removal of ammonia. For real leachates, 5 out of 8 samples resulted in ammonia reduction, with 2 samples experiencing approximately. 60% COD reduction. Power costs for treatment have been determined and the potential for a full-scale installation considered.  相似文献   

12.
13.
Speciation analysis of arsenic in landfill leachate   总被引:1,自引:0,他引:1  
As environmental impacts of landfill last from beginning of cell filling to many years after, there is an increasing interest in monitoring landfill leachate composition especially with regards to metals and metalloids. High-performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the speciation of arsenic in landfill leachates. The difficulty is related to the complexity and heterogeneity of leachate matrices. A soft sample preparation protocol with water dilution and filtration of leachates has proved to be sufficient for the achievement of identification and quantification of arsenic species without matrix effect. The cationic-exchange separation method developed has enabled the detection of six arsenic species (AsIII, MMA, AsV, DMA, AsB, TMAO) in different landfill leachates. The wide range of concentrations of arsenic species (from 0.2 to 250 microg As L(-1)) and their repartition illustrate the high variability of these effluents depending on the nature of the wastes, the landfill management, the climatic conditions and the degradation phase, to list a few. These results provide new information about the chemical composition of these effluents which is useful to better adapt their treatment and to achieve the risk assessment of landfill management.  相似文献   

14.
Fenton试剂对垃圾渗滤液中有机物的去除特性研究   总被引:5,自引:0,他引:5  
采用Fenton试剂处理垃圾渗滤液,在最佳试验条件下,考察了Fenton试剂对渗滤液中不同表观分子质量和不同种类有机物的去除效果。结果表明,Fenton试剂对表观分子质量〉2ku的COD和表观分子质量〉4ku的UV254的去除效果较好,去除率分别大于60%和80%。Fenton试剂对富里酸(FA)的去除率为85%,对腐殖酸(HA)的去除率为68.4%,对亲水性有机物(HyI)的去除率为36.5%。  相似文献   

15.
Leachate is a contaminated liquor resulting from the disposal of solid and liquid wastes at landfill sites that must be treated before discharge. Vegetated leachate treatment planes have been used at landfill sites in the UK but have received little scientific attention. This paper describes studies of model leachate treatment planes with a focus on the removal of ammoniacal nitrogen (NH3-N). Small-scale and field-scale experimental treatment planes were constructed. filled with clay loam soil and vegetated with grass (Agrostis stolonifera). Landfill leachate was applied at hydraulic loading rates ranging from 17-217l/m2/d. An exponential relationship was used to characterise the pattern of NH3-N removal. No relationship was observed between the hydraulic loading rate and the NH3-N removal rate constants (R2 = 0.0039). The daily specific NH3-N mass removal rate was found to be linearly related to the NH3-N concentration at the start of that day of treatment (R2 = 0.35). Possible causes of variation in the rate of NH3-N removal between experiments are discussed. A simple inorganic nitrogen balance indicated that the mass of N-H3-N and NO2-N removed was not accounted for by NO3-N production. Explanations for this apparent nitrogen deficit are discussed.  相似文献   

16.
结合蓬莱市生活垃圾处理场工程实例,介绍了MBR工艺处理垃圾渗滤液的工艺流程、原理等,分析了MBR工艺处理垃圾渗滤液的特点和优势。垃圾渗滤液经过MBR工艺处理,生化部分采用硝化/反硝化工艺,再经超滤/纳滤工艺等膜分离技术和其他方法处理,最终流出液水质可以达到《生活垃圾填埋场污染控制标准》(GB 16889—2008)。  相似文献   

17.
Reynolds DM 《Water research》2003,37(13):3055-3060
Water samples from lakes situated in and around the area of Tsukuba Science City, Ibaraki Prefecture, Japan, were analysed using synchronous fluorescence spectroscopy and HPLC. The spectra revealed a major emission peak (lambda emm) at 340 nm corresponding to an excitation wavelength (lambda exc) position of 280 nm and a Stoke's shift, delta lambda = 60 nm. The fluorescence intensities at these wavelengths were normalised with respect to the water Raman peak, where the lambda exc was 397 nm and the lambda emm was 453 nm, and corrections were introduced to take into account absorption/re-absorption effects of the fluorescing signals caused by the sample matrix. Normalised fluorescence values correlate well with levels of tryptophan present in the samples determined by HPLC analysis (R2 = 0.99). The relationship of the observed tryptophan-like fluorescence in the water samples to the presence of free tryptophan is discussed.  相似文献   

18.
陆瑞良 《江苏建筑》2011,(3):99-103
文章介绍了垃圾渗滤液的产生和特点,分析了国内外垃圾填埋场渗滤液的处理工艺,包括生化法、物化法和土地处理法,着重提出回灌法,并建议了渗滤液的治理方向。  相似文献   

19.
Kang KH  Shin HS  Park H 《Water research》2002,36(16):4023-4032
Humic and fulvic acids extracted from landfill leachates were characterized using elemental analysis and various spectroscopic methods. Molecular size distribution of the humic substances (HS) was also determined using batch ultrafiltration technique and permeation coefficient model. The element analysis and spectral features obtained from UV/visible, IR, and 1H and 13C NMR showed that the aromatic character in the leachate HS was relatively lower than that of commercial humic acid (Aldrich Co.), and higher in the HS of older landfill leachate. Fluorescence spectra indicated that humic acids had a relatively higher content of condensed aromatic compounds than the fulvic acids obtained from the same sources, and the spectrum of commercial humic acid showed that aromatic compounds may be present in a much more condensed and complex form. Molecular size distribution data revealed that the leachate humic acids contained a higher percentage of smaller molecules of < 10,000 D, compared with that of the commercial humic acid (45 approximately 49% vs. 33%), and molecular size of the leachate HS had a tendency to increase as landfill age increased. These results indicate that the HS from landfill leachates were in an early stage of humification, and the degree of humification increased as the landfilling age increased, which implies important information on various related researches, such as interactions of HA with pollutants in terrestrial environments, and optimization of leachate treatment processes with respect to landfill age.  相似文献   

20.
《Soils and Foundations》2002,42(3):115-126
Landfill leachate is characterized by high organic compounds that can be used by microorganisms as nutrients and induce a series of redox reactions. Thus, redox potential as well as pH is considered to have an effect on the behavior of contaminants in leachate from landfill sites. Modified batch tests, cultivating the native microorganisms in soil specimens, were conducted to evaluate the bacteria-induced redox and pH effects on the natural attenuation mechanisms of heavy metal in the bottom clay liner of landfills. The marine clay sampled from Osaka Bay, Japan was used as a natural clay liner material due to the consideration that some of the solid waste landfill sites in Japan are located in coastal areas. Iron and zinc were selected as target pollutants.Test results show that both pH and redox potential indicated a combined effect on the solubility of zinc and iron. Under the denitrification and Fe(III) reduction conditions, zinc was soluble and its solubility was only controlled by pH. When pH increased higher than 7.2, zinc precipitated as hydroxides and adsorbed on soil particle surfaces. Under the sulfate reduction condition, the formation of zinc sulfides became another attenuation mechanism. Iron was insoluble under the aerobic and denitrification conditions in natural pH conditions. Elevated levels of soluble iron were observed in moderately reduced and highly reduced conditions. A combination of nearly neutral pH and extremely low redox potential condition in landfill site tends to promote the insolubilization of zinc but the solubilization of iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号