首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a need for methodology(ies) to analyze the crack growth behavior under fretting fatigue condition since its experimental determination is a challenging task. A finite element sub-modeling method was used to estimate the crack propagation life in titanium alloy, Ti-6Al-4V specimens. Two contact geometries, cylinder-on-flat and flat-on-flat, were analyzed. The computed crack propagation lives were combined with the results of an experimental study where total fatigue lives were measured. The combined numerical-experimental approach provided the crack initiation lives. The crack propagation life increased with increasing applied cyclic bulk stress in similar manner for both contact geometries. Almost 90% of the fretting fatigue life was spent during the crack nucleation and initiation phases in the high cycle fatigue regime. A parametric study was also conducted to investigate the effects of contact load, coefficient of friction and tangential force on the crack growth behavior. The crack propagation life decreased with increase of these three parameters. This decrease was similar for the contact load and the tangential force in both contact geometries, however, the decrease in the case of coefficient of friction was relatively more in the cylindrical pad than in the flat pad.  相似文献   

2.
The effect of strain amplitude on fretting–fatigue behavior of steel wires in low cycle fatigue was investigated using a fretting–fatigue test rig which was capable of applying a constant normal contact load. The fretting regime was identified based on the shape of the hysteresis loop of tangential force versus displacement amplitude. The variations of the normalized tangential force with increasing cycle numbers and fretting–fatigue lives at different strain amplitudes were explored. The morphologies of fretting contact scars after fretting–fatigue tests were observed by scanning electron microscopy and optical microscopy to examine the failure mechanisms of steel wires. The acoustic emission technique was used to characterize the fretting–fatigue damage in the fretting–fatigue test. The results show that the fretting regimes are all located in mixed fretting regimes at different strain amplitudes. The increase in strain amplitude increases the normalized tangential force and decreases the fretting fatigue life. The abrasive wear, adhesive wear and fatigue wear are main wear mechanisms for all fretting–fatigue tests at different strain amplitudes. The accumulative total acoustic emission events during fretting–fatigue until fracture of the tensile steel wire decrease with increasing strain amplitude. An increase of the strain amplitude results in the accelerated crack nucleation and propagation and thereby the decreased life.  相似文献   

3.
The present work deals with the influence of pad span on fretting fatigue behaviour of AISI 304 stainless steel. Relative slip is one of the three primary variables influencing fretting fatigue behaviour. The relative slip can be modified by changing the pad span and/or cyclic stress. In the present study, the effect of relative slip was studied at different cyclic stress levels and by using fretting pads with three different pad span values (15, 20 and 30 mm). The relative slip increased with an increase in pad span and cyclic stress. Samples tested with fretting pads having longer pad span (30 mm) exhibited longer lives. Though the specimens tested with pads having longer pad span experienced higher frictional stress and tangential force coefficient compared with those tested with pads having smaller pad span (15 or 20 mm), the relative slip values were larger in the former. Due to larger relative slip values it was assumed that small cracks initiated by fretting fatigue would have been worn away due to wear damage. Due to this the specimens tested with pads having longer pad span exhibited enhanced fretting fatigue lives. More deformation-induced martensite formed in the samples tested with pads having longer pad span owing to longer lives.  相似文献   

4.
Abstract— Fretting fatigue tests of high tensile roping steel, 1.5 mm in diameter, 1770 MPa grade, were carried out in air and seawater. S-N curves were completed in both the environments and under cathodic protection at-850 mV (SCE). The crack growth curves were determined at three different alternating stress levels. The coefficients of friction between the specimen and the fretting bridge, where the macro-slip occurred, were found to be 0.63 in air and 0.38 in seawater. The prediction of the fretting fatigue lives were made according to the Tanaka—Mutoh model, where the frictional force was taken into consideration. The predicted fatigue life agreed well with the experimental results in air but in seawater the prediction defined a much higher fatigue limit compared with the experimental results which showed the absence of the fatigue limit. These results indicate that the method of removing the electrochemical component is very promising for the prevention of fretting fatigue failure in seawater.  相似文献   

5.
Abstract— —Fatigue tests and fretting fatigue tests of two steam turbine steels at room temperature and 773 K were carried out. The reduction of fatigue life and strength in the fretting test were significant at 773 K as well as at room temperature. The values of the friction coefficient at 773 K was almost equal to those at room temperature. The geometry of the fretting fatigue crack was flat in the early stage of fatigue life where a significant effect of fretting was observed. With increasing crack length and with a reducing effect of fretting, the fatigue crack shape changed to a semi-circular form. The fretting fatigue lives predicted on the basis of elastic-plastic fracture mechanics analysis, with the frictional force between the fretting pad and the specimen taken into consideration, agreed well with experimental results at both temperatures.  相似文献   

6.
Effect of mean stress on fretting fatigue of Ti-6Al-4V on Ti-6Al-4V   总被引:1,自引:0,他引:1  
Fretting fatigue tests of Ti‐6Al‐4V on Ti‐6Al‐4V have been conducted to determine the influence of stress amplitude and mean stress on life. The stress ratio was varied from R=−1 to 0.8. Both flat and cylindrical contacts were studied using a bridge‐type fretting fatigue test apparatus operating either in the partial slip or mixed fretting regimes. The fretting fatigue lives were correlated to a Walker equivalent stress relation. The influence of mean stress on fretting fatigue crack initiation, characterized by the value of the Walker exponent, is smaller compared with plain fatigue. The fretting fatigue knockdown factor based on the Walker equivalent stress is 4. Formation of fretting cracks is primarily associated with the tangential force amplitude at the contact interface. A simple fretting fatigue crack initiation metric that is based on the strength of the singular stress field at the edge of contact is evaluated. The metric has the advantage in that it is neither dependent on the coefficient of friction nor the location of the stick/slip boundary, both of which are often difficult to define with certainty a priori.  相似文献   

7.
The effect of hard anodizing coated 2014‐T6 aluminium alloy test samples with dissimilar mating materials on fretting fatigue was investigated. Fretting fatigue configuration involved bridge‐type pads on the flat specimen. Bridge‐type pads were made of AISI 4140 steel. All the fretting fatigue tests were conducted under plane bending loading with a stress ratio of R=?1. Coated and uncoated specimens were compared for microhardness, surface roughness, tangential force. The specimens were tested under both plain fatigue and fretting fatigue loading at ambient temperature. Micrographs obtained from scanning electron microscope showed that hard anodizing coating had tiny cracks through the thickness of the anodized layer. The hardness of hard anodized coating was higher than that of uncoated specimens and they also exhibited lower tangential force. However, the fretted region of the hard anodizing coated specimens was rougher than that of uncoated samples and despite lower tangential forces, fatigue lives of hard anodizing coated samples were inferior to those of uncoated samples. As the hard anodizing coating had pre‐existing tiny cracks and tension residual stress, cracks propagated from the hard anodizing coating through the interface into the substrate. We conclude that these may be the main reasons for inferior fretting fatigue lives compared with uncoated samples.  相似文献   

8.
A cyclic fretting fatigue test machine was constructed. The piezoelectric bimorphs were used as actuators for cyclic loading and fretting motion at the resonance frequency of the system. Fretting fatigue tests under static and cyclic loading conditions were carried out using HIP-sintered silicon nitride. From the experimental results, it was found that fretting fatigue strengths under the two test conditions were identical and hence the effect of cyclic loading on fretting fatigue strength of silicon nitride was almost negligible. A fretting crack initiated in a very early stage of the fatigue life at the position of the maximum frictional stress in the contact area. Fretting fatigue life prediction based on fracture mechanics was also carried out. The predicted lives were in good agreement with the experimental results.  相似文献   

9.
Fretting fatigue tests were conducted, using cylindrical pad and flat pad with rounded edges, at various applied pad displacements and at two normal forces on the pad under a constant bulk stress amplitude condition. The evolution of tangential force was independent of the contact configuration at a given normal force. The ratio of the tangential force to normal force increased and stabilized to a certain value with increasing applied pad displacement. The minimum fretting fatigue life was observed at the relative slip range between 50 and 60 μm and it was independent of both contact configuration and applied normal force. With increase in the applied pad displacement the response of the tangential force (Q) and the relative slip (δ) showed different fretting conditions, i.e. stick, stick-slip and gross slip. The gross slip condition was characterized by rectangular shape of the Qδ curve with or without monotonically increasing value of Q with increasing fretting fatigue cycles. Surface profile on the fretting scar was affected by the contact configurations. For cylinder-on-flat contact, the profile showed surface damage (e.g. material loss or wear) along the entire contact area. However, the fretting damage in flat-on-flat (with rounded edges) contact was concentrated on the edge, not affecting much of the flat portion of the fretting scar.  相似文献   

10.
This paper presents approximations to fatigue curves in fretting conditions with spherical contact in the alloy Al 7075. The curves are defined for a specific contact geometry and loads applied in the tests (axial load on the specimen, the normal and tangential contact forces). In order to obtain a curve of this type it is necessary to fix all parameters except for one and analyse its influence on life. The method used to estimate life in fretting fatigue combines initiation with propagation. Different approaches to the growth of short cracks are employed and in some cases a fretting fatigue limit is predicted. Various groups of fretting tests have been analysed, evaluating the suitability of each approximation.  相似文献   

11.
In this paper, the effect of bolt clamping force on the fatigue life of bolted double shear lap joints was investigated numerically. To do so, finite element simulation results were used to illustrate the trends occurred in experimental fatigue tests showing the effect of bolt clamping on improving the fatigue life of double shear lap joints. The results show that clamping force decreases the resultant longitudinal stress at the hole edge thus the fatigue life increases compared to clearance fit specimens. In general, at higher tightening torque longer fatigue lives were achieved, however, below a certain load level the life improvement was discontinued because of fretting occurrence. Also lubricating the specimens reduces the advantages of the clamping force.  相似文献   

12.
阴极极化对滑移区微动腐蚀行为的影响   总被引:1,自引:0,他引:1  
研究了45^#、GCr15和0Cr18Ni9钢在水、酸雨和海水介质中的微动腐蚀特性,以及阴极极化作用的影响.结果表明:与干态和水介质的情况相比,在酸雨和海水中这3种钢的摩擦因数降低,阴极极化使摩擦因数升高.在酸雨和海水介质中3种钢的微动腐蚀材料流失量均小于干态,阴极极化显著降低了微动腐蚀损伤和材料流失.在微动腐蚀条件下材料的流失小于干态,微动与腐蚀之间表现出“负”交互作用,是介质及其产生的腐蚀产物膜参与微动过程的原因,从而改变了摩擦副接触区表面状态,减少了摩擦副直接接触.  相似文献   

13.
In the present study, the effect of hardness of contact material on fretting fatigue strength was experimentally investigated as a function of stress ratio. AZ61 magnesium alloy used in defense and transportation industries was used as the material for both the specimen and the contact pad. Two levels of hardness of contact material, 55.3 Vickers Hardness (HV) and 83.3 HV, were prepared by heat treatments. According to the results, with increasing hardness, the fretting fatigue strength decreased. The relative slip amplitude increased with increasing hardness, while the tangential force amplitude was not influenced by the hardness. It was speculated that because the local tangential stress at the contact edge increases with increasing hardness, the fretting fatigue strength decreases with increasing hardness.  相似文献   

14.
One method to improve fretting fatigue life is to shot peen the contact surfaces. Experimental fretting life results from specimens in a Titanium alloy with and without shot peened surfaces were evaluated numerically. The residual stresses were measured at different depths below the fretting scar and compared to the corresponding residual stress profile of an unfretted surface. Thus, the amount of stress relaxation during fretting tests was estimated. Elastic–plastic finite element computations showed that stress relaxation was locally more significant than that captured in the measurements. Three different numerical fatigue crack growth models were compared. The best agreement between experimental and numerical fatigue lives for both peened and unpeened specimens was achieved with a parametric fatigue growth procedure that took into consideration the growth behaviour along the whole front of a semi‐elliptical surface crack. Furthermore, the improved fretting fatigue life from shot peening was explained by slower crack growth rates in the shallow surface layer with compressive residual stresses from shot peening. The successful life analyses hinged on three important issues: an accurate residual stress profile, a sufficiently small start crack and a valid crack growth model.  相似文献   

15.
Fretting fatigue crack nucleation in Ti?6Al?4V when fretted against itself is investigated to determine the influence of contact pressure, stress amplitude, stress ratio, and contact geometry on the degradation process. For the test parameters considered in this investigation, a partial slip condition generally prevails. The resulting fatigue modifying factors are 0.53 or less. Cycles to crack nucleation, frictional force evolution, crack orientations and their relationship to the microstructure are reported. The crack nucleation process volume is of the same order as the microstructural length scales with several non‐dominant cracks penetrating 50 μm or less. The effective coefficient of friction increases during early part of fretting. Observations suggest that cyclic plastic deformation is extensive in the surface layers and that cyclic ratchetting of plastic strain may play a key role in nucleation of the fretting cracks. A Kitagawa–Takahashi diagram is used to relate the depth of fretting damage to the modifying factor on fatigue life.  相似文献   

16.
The fretting fatigue behavior of the shot-peened titanium alloy, Ti–6Al–4V, was investigated under a seawater environment using a servo-hydraulic fatigue test machine equipped with a rigid fretting fixture. Fretting fatigue tests were performed over a wide range of stress levels to characterize the effects of seawater at high and low cycle fatigue regimes. The results of this study showed that (1) seawater reduces the fretting fatigue life of shot-peened Ti–6Al–4V in both high and low cycle fatigue regimes relative to their counterparts in ambient laboratory condition, and (2) shot-peening increases the fretting fatigue life of Ti–6Al–4V when tested under dry or seawater condition relative to its counterpart of unpeened Ti–6Al–4V. The seawater environment promotes an increase in crack propagation rate; however the crack initiation depends upon the combination of the detrimental effect from seawater environment and the beneficial effect from the residual compressive stress from shot-peening. In the present study, it appears that their cumulative effects were dominated by the residual compressive stress in both low cycle and high cycle fatigue regimes. On the other hand, the seawater environment has detrimental effect on the fretting fatigue life of unpeened Ti–6Al–4V than that in ambient laboratory condition in the low cycle fatigue regime while it improves slightly the life in the high cycle fatigue regime.  相似文献   

17.
The design and construction of an apparatus for performing quantitative fretting fatigue experiments is described. The device allows accurate measurement and control of normal contact force, tangential contact force, relative displacement between contacting surfaces and bulk fretting loads, as well as measurement of average friction coefficients. Its design is simple, and includes interchangeable fretting contact pads, allowing the use of various pad geometries without major adjustment. The device incorporates many points of adjustment for alignment and compliance, making it a robust frame for a wide variety of fretting fatigue conditions involving different materials. The capabilities of this device are also verified by results of fretting fatigue experiments conducted on a 7075-T6 aluminium alloy.  相似文献   

18.
ABSTRACT This paper proposes a procedure for estimating the total fatigue life in fretting fatigue. It separately analyses the fatigue crack initiation and propagation lives. The correlation between crack initiation and propagation is made considering a non‐arbitrary crack initiation length provided by the model. The number of cycles to initiate a crack is obtained from the stress distribution beneath the contact zone and a multiaxial fatigue crack initiation criterion. The propagation of the crack is considered using different fatigue crack propagation laws, including some modifications in order to take the short crack growth into account. The results obtained by this method are compared with the fatigue lives obtained in various fretting fatigue tests under spherical contact with 7075‐T6 aluminium alloy.  相似文献   

19.
Fatigue tests of bolted joints of SAPH400 automotive steel plate were carried out. Effect of groove on fretting fatigue strength was investigated by introducing various geometries of grooves at contact edge. The fretting fatigue strength was improved by introducing groove: the fatigue strength increased with increasing groove depth. As the next step, the applicability of the tangential stress range–compressive stress range diagram to the bolted joints was investigated using the tangential stress range–compressive stress range diagram obtained from conventional laboratory-type SAPH400 steel specimens. The result showed that the fretting fatigue strength of actual component, i.e. the bolted joint could be successfully predicted based on the tangential stress range–compressive stress range diagram.  相似文献   

20.
Fatigue tests with and without fretting against unnitrided fretting pads were conducted on unnitrided and plasma nitrided Ti-6Al-4V samples. Plasma nitrided samples exhibited higher surface hardness, higher surface compressive residual stress, lower surface roughness and reduced friction force compared with the unnitrided specimens. Plasma nitriding enhanced the lives of Ti-6Al-4V specimens under both plain fatigue and fretting fatigue loadings. This was explained in terms of the differences in surface hardness, surface residual stress, surface roughness and friction force between the unnitrided and nitrided samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号