首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 206 毫秒
1.
针对莺琼盆地地层高温高压问题,开展了高温超压测试风险评估技术研究;从井筒温度压力场、水合物预测等方面对高温高压井测试安全控制技术进行分析研究,建立了高温高压测试期间井筒温度和压力场理论计算模型,通过室内模拟试验建立了天然气水合物生成条件的预测模型,结合高温高压测试期间现场情况,提出了水合物防治的具体措施,以进一步降低测试作业施工过程中的事故和风险。  相似文献   

2.
海上高温高压井测试技术在地面流程方面主要有水合物生成堵塞管线导致流程超压、高温密封失效、地面流程冲蚀泄漏及燃烧产生高热辐射等难题。为了安全高效地完成测试作业,基于海上平台空间受限的特点,结合高温高压井测试风险, 设计了一套海上高温高压井测试地面流程,建立了一套海上高温高压井测试流程安全控制技术。通过多节点监测实现测试作业动态数据的实时监控和记录,预防了事故的发生并能及时处理复杂情况;通过设备及管线的安全配置,提高作业施工的安全性;设置地面流程应急关断屏障及测试应急放空流程,在发生泄漏时能及时截断地层高压流体来源,有效解决管线堵塞导致的流程憋压、超压问题;设置立体布控的喷淋冷却系统,防止高产天然气燃烧产生的强热辐射对平台设备和人员造成伤害。该技术现场应用效果良好,具有进一步推广应用价值。  相似文献   

3.
从测试井筒温度压力场的分布规律研究入手,预测分析高温高压井测试过程中水合物生成可能性,建立了高温高压测试期间井筒温度和压力场理论计算模型,通过室内模拟实验建立了天然气水合物生成条件的预测模型,结合高温高压井测试期间现场情况,提出了水合物防治的具体措施,进一步降低了测试作业施工过程中事故和风险。  相似文献   

4.
针对深水气井测试管柱内水合物沉积及其对测试作业的影响程度研究不足的问题,在深水气井测试管柱内水合物生成风险区域预测的基础上,建立测试管柱内水合物生成计算模型和沉积预测模型,并以陵水深水气田S2井为例,进行了不同测试工况下测试管柱内水合物沉积厚度定量预测。研究结果表明,所建立的预测模型计算结果与室内环路实验数据的误差小于10%。现场实例应用表明,通过管柱内水合物沉积厚度判断井筒缩径率,理论计算测试2h后水合物沉积导致井筒缩径率为11%,导致井口回压下降1.78MPa,实际测得回压下降约1.86MPa,误差仅为4.5%。现场通过观察井口回压变化情况,及时调整水合物抑制剂注入参数,确保了测试作业的安全顺利进行。该研究对气井测试管柱内水合物沉积的防治具有一定的指导意义。  相似文献   

5.
高温高压井测试工艺技术与装备   总被引:2,自引:0,他引:2  
由于地层及井况复杂,高温高压井测试施工成功率低.根据实践经验,总结出一系列适合高温高压井的测试配套技术.在测试前做好压力预测、井筒评价、井筒漏失评价,进行管柱力学分析、优化施工设计等,有助于提高测试成功率;通过选择好的压井液、射孔液,改进管柱结构、地面测试工艺、井口控制工艺、射孔工艺,以及改善配套设施,均有助于高温高压井的作业.  相似文献   

6.
《江汉石油科技》2007,17(2):35-35
高温高压地层测试关键技术由江汉石油管理局测录井公司研究完成,获2006年度中国石化集团公司科技进步二等奖。该项目完成了新型井下测试关井阀、减震电子压力计托筒、地面自动紧急泄压阀、高温高压井测试封隔器胶筒等高温高压井测试急需设备的研制,并将这些设备在多口井深6000m以上、井底压力超过105MPa的深井的测试中应用成功;同时还进行了管柱力学、井筒压力分布和温度分布、流体流动水合物形成规律等方面的理论研究,开发了《高温高压地层测试工程辅助分析系统》软件,建立了高温高压地层测试工程设计和施工模式与规范。  相似文献   

7.
深水高温高压井作业面临气体水合物、高温、井漏等诸多问题,严重影响深水油气资源开发作业安全。为此室内构建和评价了一套深水高温高压钻井液体系,通过引入抗高温抗盐聚合物改善保障高温性能,通过引入纳微米封堵材料提高井壁封堵稳定性,通过使用水合物抑制剂来预防水合物的生成。该体系经评价抗高温达200℃、封堵承压性能好、模拟地层条件下无水合物生成,为海上深水高温高压井作业提供了钻井液技术支持。  相似文献   

8.
现有的深水油气井完井技术施工中通常会将部分完井液圈闭于套管环形空间内,进而在深水测试作业时圈闭流体受高温高压产层热流体的影响而产生井筒附加应力。为消除附加应力对井筒完整性造成的损害,设计了一种应用隔热管进行深水油气井生产测试的圈闭压力控制技术。依据南海深水高温高压井的典型井身结构,构建了测试过程的深水井筒热传导模型,通过基于典型井的井筒传热数值计算,分别对常规测试管柱结构及隔热油管测试管柱结构进行了圈闭环空温度场的数值模拟、圈闭压力计算。研究表明,深水高温高压油气井测试过程中,应用隔热管的测试管柱复配技术,可有效降低高温高压产层流体对套管圈闭空间的附加应力影响,避免了井下事故的发生。该技术为深水高温高压油气井的安全高效测试作业提供了一种新的有效方法。  相似文献   

9.
渤海油田采用现有热采注汽管柱注汽时井底蒸汽干度低,达不到方案设计要求,同时注汽管柱自身无长效测试功能。 为进一步提升海上油田注汽工艺管柱性能,开展了高效注汽及监测工艺管柱研究。 通过模拟计算,明确了影响注汽管柱隔热效果的影响因素,研制了气凝胶隔热管+隔热接箍组合管柱,提升了注汽效果;以高温光纤测试技术为基础,结合海上热采井特点和测试需求,优化设计了长效测试工艺。 现场试验表明,高温光纤测试工艺首次成功实现了海上热采井全井筒长效测试,可满足海上热采井长效测试技术需求;通过高温监测数据进行拟合计算,应用高效注汽工艺后,井底干度可达 0.50 以上,注汽效果大幅提升。 配套形成的高效注汽及监测工艺管柱将进一步提高海上稠油规模化热采开发效果。  相似文献   

10.
高温高压深井天然气测试管柱力学分析   总被引:2,自引:1,他引:2  
高温高压深井由于地层具有很大的不确定性,测试过程中油气产量、压力、温度等参数变化范围大,使得深井测试中易出现井下工具和管柱变形、断裂等问题。以测试井井筒压力、温度预测计算为基础,结合高温高压深井的特点,分析了压力、温度变化和流体流动引起的活塞效应、螺旋弯曲效应、鼓胀效应和温度效应对井下测试管柱受力和变形的影响,并建立了测试过程中井筒内温度、压力随井深变化的预测模型,编制了高温高压深井的测试管柱力学分析软件。该成果为高温高压深井测试管柱强度设计与校核、施工参数计算等提供了依据。  相似文献   

11.
李中 《石油钻采工艺》2016,38(6):730-736
海上高温高压气田开发是一项高投入、高风险、高难度的大型海上系统工程活动。针对南海西部高温高压气田的基本特征,分析了南海西部高温高压气田开发在井筒安全、钻完井液、固井、定向井和水平井钻井、钻井综合提速、完井等方面面临的技术难点,并系统总结了目前已形成的油套管综合防腐、“五防”固井水泥浆和自修复水泥浆、超压盖层提速、储层精细保护、定向井轨迹控制以及安全完井等高温高压钻完井关键技术。随着南海高温高压勘探领域进一步拓展,当前正面临超高温高压、深水高温高压环境的巨大挑战,提出未来海上高温高压天然气开发钻完井技术应加强能适应更高温压等级的设备、材料、新工艺技术的研发以及完善海上应急救援体系,保障海上高温高压钻井的安全和高效。  相似文献   

12.
南海莺歌海盆地F气田为高温高压气田,其高温、高压、高含CO2的特点造成井筒的完整性难以保障。为此,根据储层特点,选择了合理的完井方式;依据安全性与经济性兼顾的原则,选择了改良13Cr材质的油套管;根据气田的特点及开发要求,设计了不同井型的生产管柱及射孔管柱,选择了合适的井口采油树及井下工具,并研制了新型环空保护液,最终形成了适用于海上高温高压高含酸性气体气田开发的完井技术。F气田10余口井应用了该技术,生产过程中未出现环空带压现象。实践表明,该完井技术能有效降低井筒带压风险,为规模开发莺歌海盆地高温高压气田提供技术支持。   相似文献   

13.
深水和高温、高压是目前南海西部勘探开发面临的2大挑战,测试作业更是面临海底低温、井口高温的难题,且保温测试液体系研究在中国尚属空白。通过建立气井测试系统预测传热模型,对影响深水和高温、高压气井测试井筒温度场的测试液控温性能因素进行了敏感性分析,建立了测试液控温性能调整方法。模型验证预测最大温度误差仅为3.4℃,并以此理论为基础,构建了一套控温性能可调、井口温度可控的测试液技术,其切应力大于4Pa。该技术在南海西部某深水气井测试应用中获得了成功。现场测试期间该井实测井口温度为16.5℃,计算预测该井井口温度为18℃,且井筒不同位置实测温度与预测井筒温度场十分接近,最终该井测试安全顺利,气产量达100×104m3/d。   相似文献   

14.
塔里木盆地异常高温高压井储层改造难点及对策   总被引:3,自引:1,他引:2  
异常高温高压井由于埋藏超深、施工压力大和井温异常高,对储层改造施工的液体、管柱、工艺、设备等都提出了极高的要求。针对塔里木盆地异常高温高压井的特点,进行了储层改造的技术难点分析,从压裂液、酸液、支撑剂、施工管柱、井口及地面管线、近井筒处理技术和施工工艺等方面提出了相应的关键技术对策和措施,并结合具体的井例探讨了异常高温高压井的施工失败教训和成功经验。其认识对该类井的储层改造设计和施工方案的制订具有指导作用。  相似文献   

15.
黄熠 《石油钻采工艺》2016,38(6):737-745
南海北部莺- 琼盆地高温高压区域具有巨大的天然气资源勘探潜力。但该区域具有温度高、压力高、压力台阶多、安全密度窗口窄等地质特性,对高温高压钻井工程设计和作业提出了巨大的挑战。经过三十余年的技术攻关和在该海域超过50 口高温高压井的作业实践,形成了适用于南海高温高压天然气勘探的钻井关键技术体系,包括多机制地层超压预测、抗高温钻井液、压稳防窜固井、窄压力窗口安全钻井、高温高压一体化钻井与提速等关键技术,克服了南海复杂高温高压环境下的勘探钻井技术难题,实现了南海高温高压勘探钻井作业的安全和高效。这一套较为成熟完善的海上高温高压探井安全高效钻井技术体系和管理模式,为石油工业海上高温高压钻探提供了借鉴。  相似文献   

16.
在海上深水油气井测试过程中,隔水管、测试管柱与海水、环空流体、管内流体相互作用,并组成海上测试的“管中管”结构体系,目前对于由隔水管—测试管柱组成体系产生的复杂横向承载特性的认识不足。为了给海上安全测试作业的控制提供理论支撑,针对我国南海测试使用“管中管”体系结构及作业水深超过900 m的特点,建立了海水段测试管柱的井筒温度场、压力场及轴向力计算模型;考虑内外流体与管柱相互作用,建立了隔水管和测试管柱横向动态受力模型;基于数值求解方法,进行了不同顶张力、悬挂力、海流流速及平台漂移下的“管中管”结构体系横向承载特性分析。研究结果表明:①增大顶张力、悬挂力均能减小管柱体系的横向最大承载参数,同等幅度下的顶张力对管柱横向承载参数的影响更明显;②随着海流流速的增加,管柱体系的最大横向位移、转角、弯矩增大明显;③随着平台漂移量的增加,管柱体系的最大转角和弯矩先减小后增大,即顺着海流方向使平台产生适当的漂移有助于减小管柱体系横向的最大承载参数。结论认为,该研究成果可对海上测试作业的安全控制提供理论支撑。  相似文献   

17.
东方13-1 气田目的层温度高达141℃,压力系数1.90~1.94 g/cm3,天然气中CO2 含量14.63%~50.04%,属高温高压高含CO2 天然气藏,实际开发中极易造成固井窜槽、油套管强度下降及腐蚀失效,给井筒安全造成隐患。为此设计采用了具有防漏、防窜、防腐蚀、防应变、防温变功能的“5 防”树脂水泥浆体系及油气响应型自修复水泥浆体系,实现全井段水泥封固;并提出了“尾管树脂水泥浆+ 尾管顶部封隔器+ 回接插入密封+ 回接管柱顶部封隔器+ 自修复水泥固井+ 树脂水泥固井”六级屏障设计技术,形成多级屏障的安全系统。现场应用结果表明,东方13-1 气田各生产井?177.8 mm 尾管及回接段固井质量优良, 而且从投产至今,各生产井井口压力监测均未发现有环空带压问题。该套技术可以有效封固高温高压高含CO2 产层,保障从钻完井至后期开发生产整个周期过程中的井筒完整性,降低了环空带压风险。  相似文献   

18.
为了解决深水油气井测试时各环空压力上升而破坏井筒完整性的问题,针对气井测试的短期非稳态过程,建立了井筒非稳态传热模型;然后,根据流体等压膨胀系数、等温压缩系数与密度的函数关系,建立考虑流体性质非线性变化的环空压力预测模型;在此基础上,以南海西部某深水高温高压气井为例,采用所建立的模型预测了不同测试制度下的环空温度与压力,根据最小安全系数对井筒管柱强度进行校核,进而确定井筒各环空最大允许压力,并且绘制出不同测试制度下的安全诊断图版。研究结果表明:①环空温度随着测试产量和测试时间的增加而升高,但井口和井底的温度差减小,在同一测试产量和测试时间下,环空2温度始终高于环空3,并且环空之间的温度差较大;②环空2、3的压力随着测试产量和测试时间的增加而升高,但上升的趋势变缓,并且在同一测试产量和测试时间条件下,环空2的压力大于环空3;③若不考虑流体性质非线性变化的影响,将会低估环空压力值,并且随着测试产量和测试时间增加,相对误差会继续增大;④随着测试产量和时间的增加,环空2的压力值会率先超过环空最大允许压力,因而在深水高温高压井测试作业中应重点关注不同测试制度下环空2的压力变化情况。结论认为,基于所绘制的诊断图版,可以方便、快捷地判断深水气井测试制度的设计是否合理,最大限度地保证测试过程中的井筒完整性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号