首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
利用数字散斑相关方法计算在不同温度下聚酰亚胺无机纳米杂化膜的变形量,并以此计算出聚酰亚胺无机纳米杂化膜的热膨胀系数。实验中同时测量了掺杂有不同浓度粘土、云母和二氧化硅类无机物的聚酰亚胺薄膜的热膨胀系数,并对实验结果进行了分析。  相似文献   

2.
采用溶胶-凝胶法制备了SiO2及A12O3溶胶,并将其掺入到聚酰胺酸基体中,得到无机纳米SiO2-Al2O3/聚酰亚胺杂化膜,并对其结构性能进行了研究.实验表明,薄膜材料中无机纳米SiO2和Al2O3粒子分散均匀,与有机相存在键合;材料热分解温度有所提高.  相似文献   

3.
本发明提供了一种聚酰亚胺/无机纳米杂化材料制备方法,首先合成适用于聚酰亚胺的无机纳米粒子改性剂——亚胺环基硅烷;采用溶胶-凝胶法制备无机氧化物纳米粒子,在溶胶一凝胶反应过程中加入改性剂亚胺环基硅烷,得到有机-无机复合体纳米颗粒;将有机-无机复合体纳米颗粒均匀分散于聚酰胺酸溶液中,经过加热处理得到聚酰亚胺/无机纳米杂化材料。本发明的聚酰亚胺/无机纳米杂化材料制备方法解决了纳米粒子分散的难题,在聚酰亚胺/无机纳米杂化材料中纳米粒子分布均匀,不团聚,有利于其各项性能的充分发挥。  相似文献   

4.
无机纳米杂化聚酰亚胺薄膜是一种新型纳米功能复合材料,具有非常广阔的应用前景。研究了无机纳米杂化聚酰亚胺薄膜的表面形貌和微结构,测试结果表明,纳米颗粒为α-Al2O3,颗粒尺寸在3-5nm范围内主要分布在聚酰亚胺基体畴界处。薄膜具有分形特征,其分形雏数接近扩散限制凝聚模型的理论值。  相似文献   

5.
热固性聚酰亚胺树脂基复合材料已在航空航天领域得到了广泛的应用,然而随着航空航天技术的发展,传统有机聚酰亚胺基体树脂的耐温等级逐渐不足以达到飞行器的设计和应用需求,发展新型耐高温有机/无机杂化聚酰亚胺树脂成为国内外研究重点。本文总结了近年来国内外有机/无机杂化聚酰亚胺基体树脂的发展现状,重点从合成方法、结构设计与性能调控、固化过程和高温降解行为等方面对含笼状倍半硅氧烷聚酰亚胺、含碳硼烷聚酰亚胺和含硅氧烷聚酰亚胺的特点和耐热机制进行了介绍,并对有机/无机杂化聚酰亚胺树脂未来发展面临的挑战与机遇进行了讨论分析。  相似文献   

6.
无机组分对聚酰亚胺杂化薄膜电性能的影响   总被引:5,自引:1,他引:4  
初步探讨了聚酰亚胺薄膜在电场作用下的电学行为,采用溶胶-凝胶工艺制备了聚酰亚胺/二氧化硅纳米杂化薄膜,并对薄膜进行浸水24 h处理,利用原子力显微镜对制备的薄膜进行表面形貌表征,讨论了无机组分SiO2和水对薄膜电性能的影响.结果表明:无机组分的引入及两相间的界面形态将对杂化薄膜的电学性能产生重大的影响;偶联剂的引入使得两相间产生紧密的微相结合,并对电性能产生一定的影响.  相似文献   

7.
蛋白质-无机纳米杂化制备新型胶原蛋白材料   总被引:8,自引:0,他引:8  
范浩军  石碧  段镇基 《功能材料》2004,35(3):373-375,382
通过溶胶 凝胶法制备了胶原蛋白 SiO2有机 无机纳米杂化材料。FT IR研究表明:正硅酸乙酯(前驱体)水解产生的高表面活性微粒和精氨酸、组氨酸、色氨酸侧基的—CN基团发生了键合反应,并生成了新的化学键Si—C,同时前驱体水解产生的Si—OH和蛋白质分子的侧基CH—OH间也可发生缩合反应,因而在有机相和无机相之间产生强烈的相互作用。纳米粒子的尺寸随介质pH值和SiO2含量的改变而改变,当SiO2含量<3%且控制pH值3~3.5,生成纳米粒子的尺寸均在50~80nm之间;前驱体水解后产生的SiO2粒子在蛋白质中分散均匀,未发现明显的团聚现象;当SiO2含量高且水解速度较快时,无机粒子的尺寸分布略宽且高于100nm。无机纳米粒子的引入,使得胶原蛋白的水溶性降低,耐酸、碱稳定性、耐酶水解稳定性和耐热稳定性得到了明显的提高。  相似文献   

8.
9.
含硅有机/无机纳米杂化材料   总被引:5,自引:0,他引:5  
综述了由有机硅氧烷制备有机/无机材料的sol gel方法,介绍了由此得到的杂化材料在光电材料、高性能陶瓷和聚合物以及其它功能性材料等方面的应用,并对新的sol gel原料作了展望。  相似文献   

10.
用溶胶-凝胶法制得二氧化硅(SiO2)及三氧化二铝(Al2O3)溶胶,将其掺入到聚酰胺酸基体中,得到SiO2-Al2O3/聚酰亚胺杂化薄膜,并对其结构性能进行了研究.结果表明,薄膜材料中SiO2和Al2O3粒子分散均匀,与有机相存在键合;材料热分解温度有所提高.  相似文献   

11.
利用溶胶-凝胶法制备了一种新型的聚酰亚胺杂化材料,并采用红外光谱和扫描电镜表征了杂化材料的化学结构和微观相结构以及分析了薄膜的成分及其含量。  相似文献   

12.
非线性光学含氟PI/SiO2杂化波导纳米材料的研究   总被引:1,自引:0,他引:1  
以含氟的二胺5,5'-(六氟异丙基)-二-(2-氨基苯酚)及二酐4,4'-(六氟异丙基)-苯二酸酐为单体.首先合成了经酰胺化的主链上带有活性羟基的含氟聚酰亚胺,再通过Mitsunobu反应将活性生色分子分散红1共价链接到聚酰亚胺的侧链骨架上,合成了二阶非线性光学(NLO)含氟聚酰亚胺.采用溶胶-凝胶技术,利用偶联剂APTES制备带有发色团的及含有硅氧烷端分子的聚酰胺酸,其中的Si(OR)3基经水解、缩合后,与正硅酸乙酯在催化剂作用下反应,经杂化、凝胶后,得到热稳定性高的杂化材料.将制得的含氟聚酰亚胺/SiO2杂化材料,利用FT-IR、SEM、TEM、XRD、DSC等手段对其进行了表征.杂化材料的玻璃化转变温度(Tg)为382℃,比纯聚酰亚胺的Tg(306℃)高76℃,表现出优良的高温热稳定性.  相似文献   

13.
采用不同长径比的多壁碳纳米管通过原位聚合法制备一系列多壁碳纳米管改性的聚酰胺酸胶液,并经热亚胺化途径制备聚酰亚胺杂化薄膜。利用扫描电子显微镜(SEM)观察薄膜的断面形貌,采用红外光谱仪(FT-IR)分析酸化前后多壁碳纳米管表面官能团的变化,并采用电子万能试验机对薄膜的力学性能进行测试,分析了多壁碳纳米管的含量和长径比对杂化薄膜力学性能的影响。结果表明,小掺杂量下,长径比大的多壁碳纳米管更有利于增强PI杂化薄膜的拉伸强度;而长径比小的多壁碳纳米管使杂化薄膜拉伸强度提高的碳纳米管掺杂量范围更宽。  相似文献   

14.
聚酰亚胺/SiO_2杂化膜的微观结构与力学性能   总被引:1,自引:0,他引:1  
以聚酰亚胺(HQDDA-0DA)为基体,正硅酸乙酯(TEOS)为增强剂,在共溶DMF中,通过溶胶-凝胶法,制备出厚度约为20μm,不同含量SiO2的PI/SiO2杂化膜,用Fr-IR、SEM及万能拉力实验机对膜材料的微观结构和力学性能表征.结果表明,杂化膜中Si-OH和PI存在化学键;10%SiO2含量的杂化膜SiO2颗粒呈卵形镶嵌在PI基体中,取向与膜平行,随着SiO2含量的增加,颗粒尺寸增大,30%SiO2含量的杂化膜中,无机相形成部分的连续结构,并出现团聚;10%SiO2含量的杂化膜强度和模量均为最大,随着SiO2含量的进一步增加的膜的强度与模量均下降.  相似文献   

15.
新型耐电晕聚酰亚胺杂化薄膜的制备与性能研究   总被引:1,自引:0,他引:1  
通过超声分散和原位聚合法制备了以s-BPDA/1,3,4-APB为树脂基体,以具有不同SiO2添加量的新型球型SiO2/聚酰亚胺杂化薄膜,所制备的杂化薄膜具有优异的力学、热学和耐电晕性能.通过SEM、TEM、FT-IR、UV-vis、DSC、TGA等实验手段对产物进行了分析和表征,并系统研究了SiO2的添加量对杂化薄膜...  相似文献   

16.
聚酰亚胺/无机物纳米复合材料的研究进展   总被引:2,自引:0,他引:2  
聚酰亚胺/无机物纳米复合材料是一种性能优异的新型复合材料。概述了该材料的形成机理、制备方法及材料的结构和性能。  相似文献   

17.
聚酰亚胺/纳米SiO2杂化膜的制备和表征   总被引:4,自引:0,他引:4  
以均苯四酸二酐、4,4'-二氨基二苯基甲烷和正硅酸乙酯为原料,采用溶胶-凝胶法制备聚酰亚胺/纳米SiO2杂化膜,利用FT—IR、XPS、AFM对杂化膜的制备过程及杂化膜的结构进行了表征.证实聚酰胺酸加热亚胺化较为完全,杂化膜中有SiO2粒子生成,并以纳米尺度均匀地分布于聚酰亚胺中.采用综合热分析仪对杂化膜的热性能进行了分析,结果表明杂化膜的热性能优于聚酰亚胺膜,其热分解温度比聚酰亚胺膜提高了17.8℃.  相似文献   

18.
以5,5'-(六氟异丙基)-二-(2-氨基苯酚)(6FHP)和4,4'-(六氟异丙基)-苯二酸酐(6FDA)或均苯四甲酸酐(PMDA)为单体,合成了含氟聚酰亚胺.采用溶胶-凝胶法得到了不同无机组分含量的热稳定性高的杂化材料,测定了它们的电光系数,其电光系数γ33在测试持续500min后保持其初始值的95%以上,说明材料可用于电光器件化.通过测定膜的极化前后的紫外-可见光谱,得到了取向发色团的序参数Ф(0.27~0.38),经60h序参数几乎不变.通过一维刚性气体模型研究了材料的宏观二阶非线性光学系数χ(2),结果表明材料的极化效率较高,设计合理,有较好的取向稳定性.  相似文献   

19.
通过原位聚合法分别将无序介孔碳(DOMC)、有序介孔碳(OMC)掺杂到聚酰亚胺(PI)中制备DOMC/PI、OMC/PI杂化膜。利用FTIR、TEM、SEM和XRD等分析表征两种介孔碳材料的结构及其掺杂对杂化膜形貌和结构的影响,结合CO2和N2的渗透实验考评杂化膜的气体渗透性能。DOMC、OMC均具有孔隙结构,且与CO2分子之间存在相互作用,通过掺杂DOMC、OMC既能提高杂化膜的自由体积,又可促进杂化膜对CO2的优先选择吸附。表现为掺杂DOMC、OMC可有效改善PI膜的CO2、N2渗透性能和CO2/N2渗透选择性。随掺杂量的增加,杂化膜的CO2、N2渗透性能和CO2/N2渗透选择性均先增大后减小。另外,相较于OMC,DOMC具有更多孔隙结构和更大的比表面积,使DOMC/PI杂化膜的CO2、N2渗透性能优于OMC/PI杂化膜,但两种杂化膜的CO2/N2渗透选择性相近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号