共查询到20条相似文献,搜索用时 93 毫秒
1.
Al2O3颗粒增强纯铝基复合材料的研究 总被引:7,自引:0,他引:7
本文探讨了用粉末冶金法,采用常规的冶金加工设备和工艺,制造Al2O3颗粒增强纯铝基复合材料的可行性。研究了不同Al2O3体积含量复合材料的显微组织及力学性能。初步试验了二次热挤压变形对颗粒分布和对基体强化的影响。结果表明,Al2O3颗粒与纯铝粉混合,加压烧结制备的复合材料,组织致密,颗粒分布均匀,随Al2O3含量增加,复合材料强度、硬度及弹性模量大大提高,Al2O3含量小于10%时,塑性不降低。二次热挤压有助于提高颗粒分布的均匀性;并使基体显著强化。 相似文献
2.
采用一种新型工艺制备了Al2O3/Cu复合材料。高能球磨制备亚稳态的Cu-0.8 wt% Al合金粉,再将Cu2O粉与其一起进行高能球磨,然后将复合粉末压坯在真空炉中同时进行氧化和烧结。该工艺省略了还原剩余Cu2O的环节,氧化和烧结时间仅为1 h。生成的Al2O3的粒径约250nm,颗粒间距约500 nm,均匀弥散分布;该材料冷加工后性能接近SCM制品性能。该配比的Al2O3/Cu复合材料的热稳定性良好,在800℃下循环冷淬20次无裂纹;软化温度为700℃。 相似文献
3.
为探索第三组元Y2O3添加对Al2O3/ZrO2共晶陶瓷显微组织与机械性能的影响,本文利用低温度梯度的高温熔凝法制备了直径为20 mm的Al2O3/ZrO2(Y2O3)共晶陶瓷块体,采用SEM、EDS及XRD技术对共晶陶瓷进行微结构分析,并利用维氏压痕法对其硬度和断裂韧性进行测试。SEM结果表明,凝固组织由群集的共晶团结构组成,随着Y2O3添加量的增加,共晶团形态由胞状转变为枝晶状,内部相间距在1~2 μm范围内变化。力学测试表明,Y2O3摩尔分数小于1.1%时,由于组织内部存在低硬度m-ZrO2及微裂纹缺陷,故陶瓷硬度较低,约为(9.53±0.22 )GPa;当Y2O3摩尔分数为1.1%时,陶瓷硬度最大,约为(18.05±0.27)GPa;当Y2O3的摩尔分数大于1.1%时,由于共晶团边界区内气孔缺陷及粗大组织增多,引起陶瓷硬度值略有下降。低Y2O3摩尔分数添加时,陶瓷断裂韧性相对较高,约为(6.30±0.16)MPa·m1/2,这与其内部存在大量微裂纹缺陷有关;随着Y2O3添加量的增加,陶瓷的微裂纹数量减少、边界区内缺陷增多,断裂韧性降低。 相似文献
4.
为了探究纳米-Al2O3/SiO2加入量对MgO-Al2O3-SiO2复相陶瓷烧结行为的作用机理。以微米级MgO、纳米级Al2O3和SiO2为主要原料制备陶瓷基复合材料。通过XRD和 SEM等检测手段对烧后试样的物相组成和微观结构进行测试与表征,重点研究Al2O3/SiO2的加入对复相陶瓷物相组成、微观结构及烧结性能的影响。结果表明:随着Al2O3/SiO2加入量的增大,试样烧后相对密度和烧后线变化率呈先增大后减小再增大的趋势,加入15%Al2O3/SiO2(质量分数)的试样经1 500 ℃烧结后,其相对密度可以达到94%。引入的Al2O3/SiO2与基体中的MgO生成镁铝尖晶石与镁橄榄石相,原位反应伴随的体积膨胀,抵消部分烧结过程中的体积收缩。Al2O3/SiO2加入量为75%(质量分数)的试样经1 400 ℃烧结后,基体中有大量堇青石相生成,随着煅烧温度提高到1 500 ℃,堇青石分解所产生的高温液相促进了试样的烧结收缩。 相似文献
5.
6.
通过混炼工艺制备了片状Al2O3填充聚全氟乙丙烯(FEP)复合材料,以颗粒状Al2O3为对比样品,研究了片状Al2O3形状和尺寸对 FEP基复合材料热导率的影响,利用SEM观察了FEP基复合材料的微观形貌。结果表明:在低填充量下,Al2O3颗粒在FEP基体中呈“海岛”状分布,没有形成连续的导热网链,但其热导率明显提高;复合材料拉伸强度与断裂伸长率随Al2O3含量的增加而减小;低填充量时复合材料热导率的提高主要来自Al2O3的微细片状结构,这种微细片状结构一方面提高了有效导热路径,另一方面增加了颗粒与基体之间接触面积,因此有利于热导率的提高。 相似文献
7.
8.
9.
简述了纳米Al2O3改性玻璃纤维增强环氧树脂基复合材料的制备,并对其常温、低温力学性能进行实验。结果表明,常温、低温下,复合材料的力学性能随着纳米Al2O3含量的增加都呈现先增强后减弱的趋势。低温处理使复合材料的力学性能得到提升,并且低温下Al2O3的引入对复合材料强度的改善效果比常温下明显,Al2O3含量为1%(质量分数)时,拉伸强度提高比例高达16.61%。其原因是低温下基体强度增大,另外基体热膨胀系数大,收缩明显,界面粘接强度增大,纳米Al2O3颗粒在界面处与树脂基体结合更深入,从而使纳米粒子阻碍微裂纹扩展的能力更强。 相似文献
10.
以NiO粉和Al粉为原料,采用机械球磨诱发化学反应制备了Ni_2Al_3/Al_2O_3复合粉体。利用X射线衍射仪(XRD)和附带能量色散谱仪(EDS)的扫描电子显微镜(SEM)对复合粉体球磨过程中的固态反应过程、表面形貌进行表征。将Ni_2Al_3/Al_2O_3复合粉体用浓度为20%的NaOH溶液腐蚀2h,可得到纳米晶结构的Ni/Al_2O_3复合粉体。利用XRD和TEM对其物相和结构进行了表征。结果表明,球磨1h后混合粉末仍为NiO粉和Al粉,球磨3h后NiO粉和Al粉在机械力的作用下反应形成Ni_2Al_3和Al_2O_3粉体,机械力诱发的NiO和Al之间的反应属于突发型反应,继续球磨10h后形成Ni_2Al_3/Al_2O_3复合粉体。Ni_2Al_3/Al_2O_3复合粉体在70℃、质量比为20%NaOH溶液中刻蚀2h,可获得Ni/Al_2O_3复合粉体。 相似文献
11.
增强韧性成为Al2O3等结构陶瓷材料研究领域的摘要氧化铝陶瓷材料的脆性极大地限制了该项材料的推广及应用。核心与热点问题。详细探讨了近年来氧化铝陶瓷材料增韧技术的研究现状。 相似文献
12.
13.
铬粒弥散增韧氧化铝复合材料的研究 总被引:16,自引:0,他引:16
本文以金属铬粉弥散增韧氧化名陶瓷为研究对象,具体地探讨了增韧的结果与两相界面结合强度之间的关系,试验结果表明,约有25%的铬颗粒与基体裂纹发生桥联作用,并且产生一定的颈缩塑性变形,从而吸怍能量达到增韧的目的,基体对颗粒的变形具有一定的约束作用。较高的界面结合强度使得铬颗粒在很小的塑性变形下发生脆断,而较低的界面结合强度将导致颗粒的拔出。 相似文献
14.
15.
16.
介绍了几种相转变韧化机制,主要包括ZrO2相变增韧、铁电/压电性畴转变增韧、铁弹性畴转变增韧的增韧机理和研究进展。提出一种新的相转变增韧机制——铁磁性畴转变增韧机制,即利用铁磁相的磁畴转变或压磁效应来实现能量耗散,从而达到增韧效果,探讨了其可能性。 相似文献
17.
碳纳米管因其独特的结构而具有许多独特的性能,除了在半导体器件、储氢、传感器、吸附材料、电池电极、催化剂载体等领域具有非常广阔和诱人的应用前景外,碳纳米管在制备结构、功能以及结构/功能一体化复合材料方面也将大有作为.本研究对国内外碳纳米管增强陶瓷基复合材料的研究状况进行了综合分析,指出了存在的问题及以后的发展方向. 相似文献
18.
19.
20.
连续纤维增强陶瓷基复合材料概述 总被引:2,自引:0,他引:2
八十年代以来 ,连续纤维增强陶瓷基复合材料以其优异的性能特别是高韧性 ,得到世界各国的极大关注和高度重视 ,并取得令人瞩目的发展。纤维增强陶瓷基复合材料已开始在航空、航天、国防等领域得到应用。本文从复合材料的增韧机制、制备方法、界面特性和界面改性以及应用等方面综述了国内外有关连续纤维增强陶瓷基复合材料的研究现状 相似文献