首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
以3,3'-双[单硝甲基-ONN-氧化偶氮基]氧化偶氮呋咱为原料,经过硝化,二次硝化两步反应合成了3,3'-双[三硝甲基-ONN-氧化偶氮基]氧化偶氮呋咱(BTNAF),总收率为68.7%;首次利用示差扫描量热法(DSC)研究了BTNAF的热行为,其熔点为59~61℃,分解温度为183.6℃,放热量为1989J·g~(-1);通过高斯计算,对比了BNMAF,BDNAF和BTNAF的物化性能和爆轰性能,结果表明,BDNAF(爆速9560m·s~(-1),爆压42.40GPa)和BTNAF(爆速8944m·s-3,爆压38.48GPa)是潜在的性能突出的含能化合物。  相似文献   

2.
利用3,4-双(3'-氨基呋咱-4'-基)呋咱(BATF)和2,2-二甲基-5-硝基-5-亚硝基-1,3-二氧环己烷(DMNNDO)为原料,经氧化偶联、水解、溴化、还原和硝化五步反应首次合成新型含能化合物3,3'-双(二硝甲基-ONN-氧化偶氮基)三呋咱(BDNAF),通过红外(IR)、核磁(NMR)和元素分析(EA)对中间体和目标化合物进行结构表征.利用差示扫描量热法(DSC)研究了中间体3,3'-双(单硝甲基-ONN-氧化偶氮基)三呋咱(BNAAF)和目标化合物BDNAF的热行为;采用Gaussian 09程序和Explo 5(v.6.04)预估了BNAAF和BDNAF的物化及爆轰性能.结果表明:BNAAF没有熔点,热分解峰温为106.4℃,理论密度为1.82 g·cm-3,爆速为8298 m·s-1,爆压为29.0 GPa;BDNAF的熔点为95.4℃,第一分解峰温为170.5℃,理论密度为1.91 g·cm-3,爆速为9005 m·s-1,爆压为35.9 GPa,可作为一种新型熔铸炸药.  相似文献   

3.
为了考察多硝甲基氧化偶氮呋咱含能衍生物的爆轰与安全性能,基于密度泛函理论的B3LYP方法,在6-31G**基组水平上,对比研究了硝基氧化偶氮、三硝甲基氧化偶氮及氟二硝甲基氧化偶氮三种含能基团对呋咱、偶氮呋咱、氧化偶氮呋咱及呋咱醚的几何构型、静电势分布、密度、生成焓、氧平衡、爆速、爆压、键离解能以及撞击感度的影响。结果表明,三硝甲基氧化偶氮基团与氟二硝甲基氧化偶氮基团均可大幅提高呋咱衍生物的密度和氧平衡,氟二硝甲基氧化偶氮基团还可大幅提高呋咱衍生物的爆速和爆压,且具有良好的热稳定性和撞击感度特性。基于12种呋咱含能衍生物理论计算结果,筛选出一种高能量密度化合物:3,3′-双(氟二硝甲基氧化偶氮基)-4,4′-氧化偶氮呋咱,其密度为2.019g·cm~(-3)、爆速为9.735km·s~(-1)、爆压为44.90GPa、特性落高为36cm。  相似文献   

4.
以3-氨基-4-(特丁基-NNO-氧化偶氮)基呋咱为原料,经过缩合和硝化两步反应合成了未见文献报道的化合物亚甲基-双-[3-(硝基-NNO-氧化偶氮)基-4-硝氨基-呋咱],并采用核磁共振、红外(IR)、元素分析和质谱确定了其结构。通过对其关键中间体晶体结构的研究确认了目标化合物的骨架结构。此外,通过量子化学计算方法预估了目标化合物的爆轰性能,密度为1.94 g·cm-3,爆速9502.52 m·s-1,爆压41.79 GPa,生成焓1007.67 k J·mol-1。  相似文献   

5.
以乙二醛为原料,经过中间体二(4-氨基呋咱基-3-氧化偶氮基)偶氮呋咱(ADAAF),合成了高能材料二(4-硝氨基呋咱基-3-氧化偶氮基)偶氮呋咱(ADNAAF)。用红外、核磁、质谱等表征了其结构。分析了在溴酸钾和冰乙酸的氧化体系下合成中间体ADAAF的影响因素,确定最佳工艺条件为:反应温度50℃,反应时间16 h,冰乙酸与3,3'-二氨基-4,4'-氧化偶氮呋咱(DAOAF)摩尔比为68∶1,收率为58.5%。采用差示扫描量热法和热重分析研究了ADNAAF和ADAAF的热性能。结果表明,ADAAF的分解温度为267.18℃,热重变化范围50~500℃,共失重90.91%;ADNAAF的分解温度为114.81℃,热重变化范围70~500℃,共失重100%。对ADNAAF的爆轰性能进行了理论预测,爆速,爆压分别为9140 m·s-1和38 GPa,是一种具有潜在应用价值的高能量密度化合物。  相似文献   

6.
几种呋咱含能衍生物的性能研究   总被引:10,自引:8,他引:2       下载免费PDF全文
李战雄 《含能材料》2005,13(2):90-93
研究了包括3, 3′二硝基4, 4′氧化偶氮呋咱(DNOAF)、N,N′二(硝基呋咱基)草酰胺DNFOA和5, 5′二(叠氮甲基) 3, 3′联异呋咱(DABIF)的一系列二呋咱化合物的性能。其中,DABIF和DNFOA的特性落高分别为(68±3)cm和82cm(H50, 5kg落锤),可望作为不敏感炸药应用。根据Kamlet方程计算得到DNFOA的理论爆速D=8560m·s-1,爆压pCJ=33. 6GPa,DNOAF的理论爆速D=9390m·s-1,爆压pCJ=40. 5GPa。按照以20%呋咱含能化合物代替某NEPE推进剂,计算表明,DNOAF基推进剂的比冲为269. 1s-1,高于HMX基NEPE推进剂的比冲268. 6s-1,可知DNOAF爆轰性能优良。  相似文献   

7.
以3,3′-二胺基-4,4′-氧化偶氮呋咱(AOF)为原料,经纯硝酸硝化得到3,3′-二硝胺基-4,4′-氧化偶氮呋咱(NOF)。通过复分解反应与多氮阳离子(碳酰肼(CBH)、氨基胍(AG))结合得到了两种新的含能离子盐—3,3′-二硝胺基-4,4′-氧化偶氮呋咱碳酰肼盐(NOF-CBH)和3,3′-二硝胺基-4,4′-氧化偶氮呋咱氨基胍盐(NOF-AG)。通过1H NMR、13C NMR、IR及元素分析表征了化合物的结构。用TG-DTG研究了化合物的热行为。采用量子化学方法对比研究了NOF及其阴离子NOF2-的几何构型。预估了化合物的爆轰性能。结果表明,NOF-CBH和NOF-AG的初始分解温度分别为144.9,151.6 ℃,高于NOF的90 ℃。NOF-CBH和NOF-AG的标准摩尔生成焓分别为515.86 kJ·mol-1和815.96 kJ·mol-1,密度分别为1.82 g·cm-3和1.75 g·cm-3,理论爆速均大于8500 m·s-1。  相似文献   

8.
以3,4-双(3'-氨基呋咱-4'-基)呋咱(BATF)为原料,经氧化反应合成了未见文献报道的含能化合物双3,3'-偶氮双(3-氨基三呋咱)(ABATF),收率82%;采用红外、核磁、质谱以及元素分析等对目标化合物进行了表征;确定了氧化反应的最佳条件为加料时间20~30 min,BATF和KMn O4摩尔比1∶1,反应温度50℃;采用差示扫描量热法和热重-微商热重研究了ABATF的热行为,其最大放热峰温为295.5℃。通过Gaussian 09程序和VLW状态方程计算了ABATF的物化和爆轰性能,其密度为1.765 g·cm-3、爆速8250 m·s-1、生成焓1626.6 k J·mol-1、爆压为29.4 GPa、爆热为6350 J·g-1,综合性能优于BATF。  相似文献   

9.
以3,3'-二胺基-4,4'-氧化偶氮呋咱(AOF)为原料,经纯硝酸硝化得到3,3'-二硝胺基-4,4'-氧化偶氮呋咱(NOF)。通过复分解反应与多氮阳离子(碳酰肼(CBH)、氨基胍(AG))结合得到了两种新的含能离子盐—3,3'-二硝胺基-4,4'-氧化偶氮呋咱碳酰肼盐(NOF-CBH)和3,3'-二硝胺基-4,4'-氧化偶氮呋咱氨基胍盐(NOF-AG)。通过1H NMR、13C NMR、IR及元素分析表征了化合物的结构。用TG-DTG研究了化合物的热行为。采用量子化学方法对比研究了NOF及其阴离子NOF2-的几何构型。预估了化合物的爆轰性能。结果表明,NOF-CBH和NOF-AG的初始分解温度分别为144.9,151.6℃,高于NOF的90℃。NOF-CBH和NOF-AG的标准摩尔生成焓分别为515.86 kJ·mol-1和815.96 kJ·mol-1,密度分别为1.82 g·cm-3和1.75 g·cm-3,理论爆速均大于8500m·s-1。  相似文献   

10.
王军 《含能材料》2008,16(2):238-238
含呋咱(氧化呋咱)环的含能化合物具有许多优异的炸药性能: 标准生成焓高,富含氮氧,能量密度优异,分子稳定性好,熔点较低,是炸药界研究热点之一.3,4-二(氨基呋咱基)氧化呋咱(BAFF)爆速较高,热稳定性良好,机械感度低,是一种新型高能低感炸药.本课题组以其为基本结构单元通过偶氮、氧化偶氮等设计出了系列BAFF衍生物.本文首次报道了该类衍生物之一--3,3′-二(3-氨基呋咱基氧化呋咱-4-基)-4,4′-偶氮呋咱(BAFFaF)的合成与表征.  相似文献   

11.
张君君  申程  王鹏程  陆明 《含能材料》2017,25(5):391-395
以六氢咪唑[4,5-d]咪唑-2(1H)-亚胺为原料,通过三个阶段硝化反应合成了一种新型多环氮杂环含能化合物:N~(-1),4,6-三硝基六氢咪唑[4,5-d]咪唑-2(1H)-亚硝胺(TNINA),总收率55%。采用红外光谱(IR)、核磁共振(NMR)、质谱(MS)对目标产物以及中间体进行了表征,同时研究了时间、温度、乙酸酐与硝酸体积比等因素对第三阶段硝化反应的影响。利用热重分析(TG)和差示扫描量热仪(DSC)研究了TNINA的热性能,DSC结果显示其热分解温度为214.4℃,且放热过程瞬间完成。用Monte-Carlo方法估算TNINA的理论密度为1.91 g·cm~(-3),真密度仪测得其密度为1.89 g·cm~(-3)。用Kamlet-Jacobs方程估算出其爆热为5513.26 kJ·kg~(-1),爆速为8.836 km·s~(-1),爆压为35.80 GPa,撞击感度H50的计算值为41 cm,测试值为53 cm。理论计算结果与实验数据说明TNINA与RDX相比拥有更优异的爆轰性能与更低的感度。  相似文献   

12.
2,6-二苦氨基-3,5-二硝基吡嗪的合成与表征   总被引:1,自引:1,他引:0  
以2,4,6-三硝基氯苯与2,6-二氨基吡嗪为原料,经过缩合、硝化两步反应,合成了一种新化合物2,6-二苦氨基-3,5-二硝基吡嗪(BPNP),总收率为47%。采用红外光谱(FTIR)、核磁共振(NMR)、质谱(MS)对产物进行了表征。确定了以异丙醇为溶剂,吡啶为催化剂时的产率最高;以V(H_2SO_4)∶V(HNO_3)=4∶1,反应温度50℃,反应时间3h,硝化效果最佳。热重分析(TG)和差示扫描量热结果表明,该化合物的热分解温度为374.3℃,热稳定性与2,6-二苦氨基-3,5-二硝基吡啶(PYX)相当。用MonteCarlo方法估算其理论密度为1.82g·cm~(-3),用Kamlet-Jacobs公式估算其爆速为8.13km·s~(-1),爆压为28.25GPa;采用Miroslav的静电势预估撞击感度的方法,对目标结构进行了稳定性预算,其撞击感度H_(50)的计算值为83cm。理论计算结果说明该材料密度和爆压均高于PYX,具有一定的应用研究价值。  相似文献   

13.
3,4-二硝基吡唑的性能表征及应用   总被引:2,自引:2,他引:0  
为了探究3,4-二硝基吡唑(DNP)替代TNT作为新型熔铸炸药载体的可行性,采用光学显微镜、傅里叶红外变换光谱仪、紫外可见分光光度计及DTA/TG热分析仪器对其结构进行了表征,利用氧弹量热仪、电测法分别测试了DNP爆热、爆速,并应用VLW程序计算了TNT/CL-20,DNP/CL-20混合炸药的爆轰参数。结果表明,DNP热分解过程主要分为吡唑环断裂和硝基脱环、自催化加速反应两个阶段,热分解表观活化能为131 k J·mol-1;DNP爆热、爆速分别为4326 k J·Kg~(-1)、7633 m·s~(-1),计算得出DNP/CL-20混合炸药爆轰性能明显优于TNT/CL-20混合炸药,当DNP/CL-20=2∶3(质量比)时,计算爆压为39.4 GPa,爆速为8961 m·s~(-1)。  相似文献   

14.
以乙酰乙酸乙酯为原料合成了一种新型含能化合物——5-甲基-4-硝基-1H-吡唑-3-(2H)-酮(MNPO),总收率68%,通过复分解反应和中和反应,由MNPO与一系列高氮阳离子反应,制备出了相应的含能离子化合物。采用X-射线单晶衍射(XRD)、傅里叶变换红外光谱(FT-IR)、核磁共振(~1HNMR、~(13)CNMR)谱、元素分析等手段对其结构进行了表征。利用热重法(TG)-差示扫描量热法(DSC)测定了其热分解温度;运用Explo5v6.02软件对其爆轰性能进行计算。结果表明,MNPO晶体属于正交晶系,Pbca空间群,晶胞参数为a=0.71495(18)nm,b=1.1639(3)nm,c=1.3834(3)nm,V=1.1512(5)nm~3,Z=8。对密度范围为1.62~1.74g·cm~(-3)的MNPO的含能离子化合物,它们的热分解onset温度范围为181~272℃,理论爆速大于7000m·s~(-1),爆压大于15GPa;实测撞击及摩擦感度低,其中MNPO的铵盐的撞击感度为28J,摩擦感度为240N。  相似文献   

15.
为了获得4,4'-二(氯偕二硝基甲基)-3,3'-偶氮呋咱(BCNAF)的晶体结构,以4,4'-二氰基-3,3'-偶氮呋咱为原料,经三步合成了BCNAF。以无水甲醇为溶剂,采用溶剂挥发法获得了目标化合物的黄色块状单晶。利用X-射线单晶衍射技术对单晶结构进行了表征。结果表明,该分子在293(2)K下晶体密度为1.869 g·cm~(-3),单晶结构为单斜晶系,空间群为P2_1/n,晶胞参数为a=7.5846(14),b=8.4227(15),c=12.324(2),β=90.880(4)°,V=787.2(2)~3,Z=2,μ=0.494 mm~(-1),F(000)=440。分子结构高度对称,分子间存在的π-π堆积作用以及卤键作用,可以提高BCNAF的稳定性。用差热扫描量热对晶体进行热分析,结果表明其分解温度为142℃。基于Guassian 09和等键反应计算得到其固相生成热为816.5 k J·mol~(-1),优于RDX。采用EXPLO5预测其理论爆速为8400 m·s~(-1),爆压为30.8 GPa,与RDX相当。  相似文献   

16.
合成了三种基于 3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-s-四嗪(BTATz)的含能离子盐:二甲胺盐(DMAB),1,3-丙二胺盐(PDAB)和1,4-丁二铵盐(BDAB).用IR,1H NMR,13C NMR和元素分析表征了DMAB、PDAB和BDAB的结构.采用X-射线单晶衍射测定了PDAB的晶体结构.计算了PDAB的爆速(D)和爆压(p).用DSC和TG-DTG研究了DMAB、PDAB和BDAB的热分解行为.计算了自加速分解温度(TSADT),热爆炸临界温度 (Tb),热点火温度(TTIT)及绝热至爆时间(tTIAD).结果表明,PDAB晶体属于单斜晶系,C2/c 空间群,晶胞参数:a=2.2699(10) nm,b=0.5098(2) nm,c=1.6449(6) nm,β=93.045(15) °,V=1.9008(13) nm3,Dc=1.504 g·cm-3,Z=4,F(000)=912,μ=0.127 mm-1,R1=0.0673,wR2=0.2002.PDAB的爆速和爆压分别为8862.09 m·s-1和32.15 GPa.DMAB、PDAB和BDAB的TSADT值分别为576.87,511.90,521.55 K,显示DMAB的热稳定性优于PDAB和BDAB.DMAB、PDAB和BDAB均可作为潜在的含能材料且DMAB的性能优于PDAB和BDAB.  相似文献   

17.
1-三硝甲基-3-硝基-1,2,4-三唑的晶体结构及性能预估   总被引:1,自引:1,他引:0  
殷欣  马卿  王军  王树民 《含能材料》2017,25(5):437-440
为了获得1-三硝甲基-3-硝基-1,2,4-三唑(TNMNT)的晶体结构并对其性能进行预估,以3-硝基-1,2,4-三唑为原料,通过取代、硝化反应合成出了TNMNT,收率为62%,以无水乙醇为溶剂,用溶剂蒸发法培养得到纯的TNMNT单晶,并采用核磁共振谱、红外光谱与X-射线单晶衍射仪进行了结构表征。用DSC-TG法分析了热稳定性。用Gaussian 09 and EXPLO5(V6.02)程序分别计算了生成焓和爆轰参数。结果表明:TNMNT晶体属于单斜晶系,空间群P21/c,晶体参数为a=6.643(3),b=20.494(7),c=6.698(3),β=94.225(9)°,V=909.4(6)3,Z=4,Dc=1.922 g·cm~(-3),μ=0.190 mm~(-1),F(000)=528.0。5℃·min-1升温速率下,TNMNT的热分解峰温为158.3℃。它的标准生成焓为210.9 kJ·mol~(-1),爆速为9023 m·s~(-1),爆压为35.5 GPa。大量分子间和分子内氢键作用的存在使TNMNT分子稳定存在,硝仿基团的引入使TNMNT分子的能量提高。  相似文献   

18.
为了研制新型耐热含能材料,合成了2,2′,4,4′,6,6′六氯3,3′,5,5′四硝基偶氮苯(HCTNAB)和4,4′二氯2,2′,3,3′,5,5′六硝基6,6′二甲氧基偶氮苯(DCHNDOCAB)两种新型的多硝偶氮苯化合物,通过元素分析、FTIR、X射线单晶衍射等表征了合成产物结构,应用DSC和TG DTG研究了其热稳定性,其中HCTNAB分解温度为266.8℃,DCHNDOCAB分解温度为269℃。基于Gaussian09程序、在6311++G^**基组水平上用B3LYP法对DCHNDOCAB分子结构进行优化和性能预估。研究发现:HCTNAB的是一种重要的含氯含能中间体;计算得DCHNDOCAB的爆速达到7117m s^-1,爆压为21.0GPa,有望成为一种新型的偶氮类耐热炸药。  相似文献   

19.
张驰  陈沫  陈湘  张聪  宋纪蓉  马海霞 《含能材料》2017,25(4):273-281
运用密度泛函理论DFT-w B97/6-31+G**方法研究了14种稠环类1,2,4,5-四嗪衍生物的几何结构、前线轨道能量和生成焓(ΔH_f)。在此基础上运用Kamlet-Jacobs方程估算衍生物的爆轰性能;运用统计热力学,计算了标题化合物在200~800 K的热力学性质;比较了1,2,4,5-四嗪衍生物的生成焓和爆轰性能。结果表明,稠环四嗪衍生物爆速(D)和爆压(p)与所含N原子数具有良好的一次线性相关关系,其生成焓为527.49~1122.53 k J·mol~(-1),爆速为5.59~8.65 km·s~(-1);随温度升高,标准摩尔热容(Cp,m)、标准摩尔熵(Sm)和标准摩尔焓(Hm)逐渐增大。化合物T7(C_2N_7H_2)和T72(C_2N_(10)H_2)可以作为高能量密度材料(HEDM)候选物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号