首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 1/20 reduced-scale experiments using Froude scaling are conducted to investigate the effect of longitudinal ventilation velocity on the burning rate in tunnel fires. The n-heptane pool fires with heat release rate ranging from 3.71 to 15.6 kW are used in this study. A load cell is used to measure the mass loss rate of burning fuel and the temperature distributions are measured by K-type thermocouples in order to investigate smoke movement. The ventilation velocity in the reduced-scale tunnel is controlled by the wind tunnel through an inverter. The increases in ventilation velocity lead to enhance burning rate of n-heptane fuel. The reason is that the oxygen supply effect prevails rather than the cooling effect as the ventilation velocity increases. As a result, the heat release rates in experiment are larger than constant heat release rates by 4.45–11.3 times in the n-heptane pool fires. Also, it is found that non-dimensional critical ventilation velocity is proportional to one-third power of non-dimensional heat release rate.  相似文献   

2.
A CFD model of the 4th Beijing subway line was used to study the effect of longitudinal ventilation on heat and smoke plume movement in the tunnel. The critical ventilation velocity is correlated with the heat release rate for both a simplified heat fire source model and a complete combustion fire source model with methane gas as fuel. The influences of the heat source length and the fuel gas inlet geometry on the critical velocity are investigated for both fire source models. The results show that the influences of the combustion process and fire source area variation are not included in models based on Froude number preservation theory. Thus, Ri is no longer suitable as a dimensionless number for the critical ventilation velocity when the fire geometry or combustion conditions influence the results. The back-layering air temperature above the front of the fire source can be used to explain the different critical velocity variation regimes for all the simulation conditions.  相似文献   

3.
Critical ventilation velocity for tunnel fires occurring near tunnel exits   总被引:1,自引:0,他引:1  
Ventilation is an effective method for controlling smoke during a tunnel fire. The “critical ventilation velocity” ucr is generally defined as the minimum velocity at which smoke is prevented from spreading against the longitudinal ventilation flow in tunnel fire situations. This study conducted small-scale experiments to investigate ucr for situations when tunnel fire occurs near tunnel exits. The model tunnel was 4 m long, 0.6 m wide and 0.6 m tall, and the fires were located at 0.5 m, 1.0 m and 1.5 m from the tunnel exit. 6.3×6.3 cm2 and 9.0×9.0 cm2 square asoline fuel pans were used as fire source. Results show that ucr decreases as the fire approaches the tunnel exit.  相似文献   

4.
The effect of the vehicular blockage in a tunnel under longitudinal ventilation smoke control was systematically studied using a small-scale tunnel (1:30 of a standard tunnel section) with a helium-air mixture as the buoyant plume. The experimental results showed excellent agreement with full-scale data and reference correlations from former studies. When there are vehicular obstacles in the tunnel, the critical velocity decreased as a function of the blockage ratio. Notwithstanding, it was found that the relative size of the vehicular obstacle and the relative location of the fire source can have a reversed effect, inasmuch as the presence vehicular obstacle exerted an influence on the critical and confinement velocities. Moreover, the backlayering distance was evidently affected by the vehicular blockage. A parallel analysis was carried out for the backlayering distance for lower and upper regimes of the dimensionless heat release rate, where the current data was compared against data from other studies. The method and experimental set-up proved their ability to reproduce several phenomena and thus also their capability to supply relevant and valuable information on the effect of the vehicular blockage on tunnel fire dynamics.  相似文献   

5.
6.
Based on the Froude similarity law, a small-scale tunnel model (1/14) was built based in this study to investigate critical velocities of tunnels. Critical velocity is the minimum air velocity required to resist the spread of smoke from a fire upstream in a tunnel. A set of experiments was conducted to investigate the critical velocities under different experimental conditions by varying the heat release rate of the fire, ambient temperature, operating pressure and arrangement of the nozzles. The results of the tests with no spray indicated that the ambient temperature has little impact on the critical velocity. Moreover, based on the dimensionless analysis method, a new correlation was established to predict the critical velocities in the tunnel without Water spray-based Fixed Fire Fighting Systems (WFFFS). The accuracy of the correlation was illustrated by the results of the present tests and a number of tests on different scales published by other scholars. Furthermore, 60 tests with WFFFS activation were carried out. The results show that the critical velocity is significantly reduced after the water spray discharged from the nozzles. The maximum reduction of the critical velocity is approximately 31%. The reduction of the critical velocity strongly depends on the number, positions and operating pressures of the nozzles. The mechanisms of the reduction of the critical velocity caused by spraying were discussed. The cooling effect of the water droplets on hot gas is not the only mechanism for decreasing the critical velocity caused by spraying. Spraying increases the inertial force of the longitudinal airflow and is the other mechanism for the reduction.  相似文献   

7.
Model scale fire tests were performed in tunnels with varying tunnel widths and heights in order to study the effect of tunnel cross-section and ventilation velocity on the heat release rate (HRR) for both liquid pool fires and solid fuel fires. The results showed that for well ventilated heptane pool fires, the tunnel width nearly has no influence on the HRR whilst a lower tunnel height clearly increases the HRR. For well ventilated solid fuel fires, the HRR increases by approximately 25% relative to a free burn test but the HRR is not sensitive to either tunnel width, tunnel height or ventilation velocity. For solid fuel fires that were not well ventilated, the HRRs could be less than those in free burn laboratory tests. In the case of ventilation controlled fires the HRRs approximately lie at the same level as for cases with natural ventilation.  相似文献   

8.
The safety of a running train on fire in a tunnel is a key issue for rescue operations, and the train velocity is mainly related to its safety. In this study, the relationship between the wind velocity and heat release rate (HRR), temperature field around the train, and flame/smoke pervasion rule were investigated under the conditions of variable train velocity, fire location, and fire source location. Beijing Metro was considered as a typical example, in which the safe velocity was estimated to be ∼41.83 km h−1. Assuming the occurrence of fire at the center of the train, the numerical simulations of the flow field using the sliding grid of CFD were performed for a full-scale tunnel under different HRRs. When the fire source reached to the target section, the velocities of all the monitoring points rapidly increased. The velocities increased as the train tail arrived at the target section. The velocities at the measuring points increased with the increase in height, excluding the value of the position with a distance of 0.025 m from the tunnel ceiling. The average temperature and concentration of smoke in the annular space between the train and tunnel ceiling had the minimum values when the running train on fire moved with a speed of 45 km h−1. Thus, the safe velocity of a subway train on fire should be managed between 41.83 km h−1 and 45 km h−1.  相似文献   

9.
In this study, numerical simulation was carried out to analyze the effect of the aspect ratio on smoke movement in tunnel fires using FDS 3.0. Temperature distribution under the ceiling showed a relatively good agreement with experimental results within 10 °C. It confirmed the possibility of application of FDS code to tunnel fires. Results from varying of the aspect ratio showed good agreement with experimental data. Temperature near the fire source decreased with the increase of the aspect ratio. But, the rate of the temperature decrease was reduced by the decrease of the heat loss in the spanwise direction. Clear height of the simulation by the analysis of the velocity distribution was about 3% higher than that of the experimental result. Numerical results predicted the back-layering distance and the critical velocity reasonably.  相似文献   

10.
This paper reviews the physics and correlations for the burning behaviour of pool fires in wind, discussing also challenges for future research on this topic. In the past decades, the burning behaviour of pool fires in still air, which is solely buoyancy driven, has been extensively studied. These studies are primarily focused on scale, radiation, soot, pressure and gravity effects. However, these phenomena and physics change significantly with much more complexity in the presence of wind, with regard to heat feedback and burning rate; flame morphological characteristics; flame turbulence, soot and radiation emission. Remarkable progress has been made in understanding the behaviour of the heat feedback and burning rate, flame tilt, flame length and flame base drag of wind-blown pool fires. Several semi-empirical correlations have been proposed for these quantities, based on experimental data and the physically dimensional analysis. However, for wind-blown pool fires, the flame soot and radiation emission coupling with complex flow turbulence scales due to the interaction of buoyancy with wind still require more basic research. All these processes are more challenging especially for wind-blown large scale pool fires, which require knowledge and understanding of the physics, especially for establishing evaluation methodologies of their hazard and adverse impact.  相似文献   

11.
采用试验与数值模拟研究隧道双火源火灾临界风速变化,重点研究双火源功率和火源间距对临界风速的影响。结果表明:随着火源间距增加,临界风速逐渐降低,当两火源间距达到极限距离时,临界风速不再变化;当进风口侧火源功率确定时,在极限间距内出风口侧火源功率增大时,临界风速增大,说明出风口侧的火源对进风口侧的烟气回流有促进作用;在极限间距内,临界风速随火源间距增加呈二次方递减到一个稳定值;两火源总功率越大,临界风速随着间距增加降低的幅度越明显。并得到了临界风速的预测公式。  相似文献   

12.
In order to detect a fire and provide adequate fire protection to a tunnel structure, the maximum gas temperature beneath the ceiling to which the structure is exposed needs to be estimated. Theoretical analysis of maximum gas temperature beneath a tunnel ceiling based on a plume theory is given. The heat release rate, longitudinal ventilation velocity and tunnel geometry are taken into account. Two series of model-scale experimental tests were also carried out. The results of both analysis and experiments show that the maximum excess gas temperature beneath the ceiling can be divided into two regions. When the dimensionless ventilation velocity is greater than 0.19, the maximum excess gas temperature beneath the tunnel ceiling increases linearly with the heat release rate and decreases linearly with the longitudinal ventilation velocity. When the dimensionless ventilation velocity is less than 0.19, the maximum excess gas temperature beneath the ceiling varies as the two-thirds power of the dimensionless heat release rate, independent of the longitudinal ventilation velocity. In both regions, the maximum excess gas temperature varies as the −5/3 power of the vertical distance between the fire source bottom and tunnel ceiling. The investigation presented here considers only the cases when the continuous flame region is lower than the ceiling height.  相似文献   

13.
针对大尺度量热计装置,在隧道量热计内开展试验对正庚烷油池火热释放速率、热释放总量进行校正。利用冷流场校正了解排烟管道气体流量的稳定性及均匀性,分别针对不同油盘个数、排列方式条件下进行正庚烷油池火校正试验。结果表明:在冷流场校正试验中,排烟管道内的烟气体积流量维持在27.9 m3/s;通过对实测热值与理论热值的误差比较分析,7组试验中有6组试验的实测热值与理论热值之间的误差低于10%。  相似文献   

14.
Five large-scale fire tests, including one pool fire test and four HGV mock-up fire tests, were carried out in the Runehamar tunnel in Norway in year 2003. New data and new analyzes are presented in this paper, together with a short summary of previous work on these tests. Heat release rate (HRR), radiation, fire spread, gas production, backside wall temperature, visibility, backlayering, fire growth rate, gas temperature, flame length, ventilation and pulsation are investigated. Simple theoretical models are developed to estimate and predict these parameters. The correlations developed can be used by engineers working on fire safety in tunnels.  相似文献   

15.
In this work, a numerical model of tunnel fire is developed and aimed to investigate the influence of cross-sectional fire locations on critical velocity and smoke flow characteristic. It is shown that the critical velocity for a fire next to the wall is obviously higher than that for a fire in the middle or on the left/right lane. The ratio is estimated to be 1.12. The predictions of critical velocity from ‘small-fire’ models show a good agreement with that for a fire in the middle or on the left/right lane from CFD. The tunnel height at the fire location is proposed to be instead of the hydraulic tunnel height in the ‘big-fire’ model of Wu and Bakar for a fire next to the wall. The smoke moves backward in a tongue like form as the ventilation velocity is lower than the critical velocity. The back-layering length of a fire in the middle is shown to be approximate twice than that on the left/right lane under the same ventilation velocity, although they share the same critical velocity. Whereas a relatively short back-layering length for a fire next to the wall under the velocity of 2.6 and 2.7 m/s. In addition, a snaky high-temperature profile on the top wall at the initial downstream is observed for a fire on the left lane and next to the wall, and finally a steady and layered smoke flow. The likely cause of this phenomenon is subsequently explained in this study.  相似文献   

16.
在核安全研究框架内对在受限和通风防火分区内油池火燃烧速率进行了试验研究。在实体火灾试验基础上,此研究为在受限和通风火灾场景下的燃烧速率机理提供了新的信息。描述了在自由条件和空气受限条件下所进行的试验,对试验装置、仪器以及火源进行了详细叙述。在相同场景(0.4m^2TPH油池火)下,对自由条件和空气受限条件的试验情况下的燃烧速率进行了对比。在空气受限情况下,燃烧速率与时间的变化曲线显示出三个不同阶段:自由条件和受限燃烧速率相同;不稳定阶段,空气受限条件下燃烧速率高于自由条件下的燃烧速率;稳定阶段。从图像分析看,不稳定阶段显示,动荡和间歇火焰大大提高了燃烧速率。介绍了通风速率和油池面积对此现象的影响。试验结果为理解有限区域内燃烧速率提供了新的试验信息。  相似文献   

17.
We examined the exhaust performance of a hybrid ventilation strategy for maintaining a safe evacuation environment for tunnel users in a tunnel fire. The hybrid ventilation strategy combines the longitudinal ventilation strategy with the point ventilation strategy which is a type of transverse ventilation strategy. The model tunnel developed by this study was scaled to 1/5 the size of a full-scale tunnel. The model-scale experiment was performed taking into consideration Froude's law of similarity. Measurement items were the distribution of temperature and concentration of smoke inside the tunnel, longitudinal wind velocity, mass flow of smoke in the point ventilation duct, and the heat release rate of the fire source. The following main conclusions were obtained. The smoke height was constant even when varying the extraction rate of smoke from the ceiling vent. The backlayering length and critical velocity of the smoke flow in the hybrid strategy could be predicted by the methodology developed by using the longitudinal strategy. The hybrid strategy maintained a safe evacuation environment on both sides of the tunnel fire.  相似文献   

18.
19.
针对不同断面宽度隧道中发生火灾时的火风压变化问题,利用Fluent软件模拟隧道内发生火灾的情况,分析隧道宽度对临界风速的影响以及隧道宽度、火源功率和通风速度对火风压的影响.研究表明,火源功率较小时,宽度越小的隧道,临界风速越大;随着火源功率的增大,临界风速之间的差距减小.火风压中火区绕流阻力和热烟摩阻增量会随着风速的增...  相似文献   

20.
详细分析了目前常用的非稳态火源热释放速率计算式,并对其特点和参数范围进行了对比讨论;将各种非稳态火源热释放速率计算式嵌入建筑物火灾烟流性状预测软件并进行了算例验证。结果表明,加入非稳态火源的烟流性状预测软件计算结果与日本同类成功软件的计算结果吻合得很好,且曲线走势更平滑,并减轻了输入的工作量。结果证实了对烟流性状预测软件火源部分的改进是成功的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号