首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoelectric behavior of a black dye, tris (isothiocyanato)-[N-(2,2′:6′,2″-terpyridine-4′-(4-carboxylic acid) phenyl)] ruthenium (II) complex, was examined under different conditions. The dye was adsorbed on nanocrystalline TiO2 surface strongly and generated incident monochromatic photon-to-current conversion efficiency (IPCE) of about 90% at maximum absorption wavelength and greater than 20% in the near-IR region. A sandwich-type solar cell fabricated by this dye-sensitized nanocrystalline TiO2 film generated 6.1 mAcm−2 of short-circuit photocurrent, 0.58 V of open-circuit photovoltage and 2.9% of overall yield under irradiation of white light (78.0 mWcm−2) from a Xe lamp. Since the title dye shows better photoresponse than the N3 dye in the near-IR region, it would be a promising panchromatic sensitizer after optimization.  相似文献   

2.
Low-temperature (180–240 °C) synthesis of nanocrystalline titanium dioxide (TiO2) by surfactant-free solvothermal route is investigated. Titanium iso-propoxide is used as the precursor and toluene as the solvent. Different precursors to solvent weight ratios have been used for the synthesis of TiO2 nanoparticles. For the weight ratios 15/100, 25/100 and 35/100 the X-ray diffractograms show the formation of nanocrystalline TiO2. The X-ray diffraction and transmission electron microscopy studies shows that the product has anatase crystal structure (for temperatures <200 °C) with average particle size below 15 nm. The films deposited by spray deposition method using these nanoparticles show the crystalline and porous nature of the films. The present method of deposition also avoids the post-treatment (sintering) of the films. The nanoparticles thus prepared and the films can be used for gas sensing and biological applications and also as photo-electrodes for dye-sensitized solar cells.  相似文献   

3.
We have fabricated solid-state, dye-sensitized nanocrystalline TiO2 solar cells (DSSC) based on perylene derivative dye, N,N′-bis-2-(1-hydoxy-4-methylpentyl)-3,4,9,10-perylene bis (dicarboximide) (HMPER) with two different polythiophenes as hole conductors; i.e. poly (3-octyl thiophene) (P3OT) and poly (3-hexyl thiophene) (P3HT), respectively. HMPER adsorbs strongly to the surface of nanocrystalline TiO2 and inject electrons into TiO2 conduction band upon absorption of light. Polythiophene derivatives are well-known materials as hole conductors in solid-state dye-sensitized solar cells. We obtained quite similar results with P3OT and P3HT yielding a short-circuit current density of around 80 μA/cm2 and open-circuit voltage of around 0.7 V at 80 mW/cm2 AM 1.5 light intensity. The results are compared with Ru-535 TBA-sensitized nc-TiO2 cells prepared by using the same polythiophene derivatives.  相似文献   

4.
The influences of annealing temperature and different poly (ethylene glycol) (PEG) contents in nano-crystalline TiO2 electrodes with and without N3 dye on the electron transfer in a dye-sensitized solar cell (DSSC) were investigated. It is found that the power conversion efficiency increases with the increase in annealing temperature and becomes saturated at 400–500 °C, and further increase lowers the performance which is consistent with the enhancement of the crystalline TiO2 particles observed in X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images. Electrochemical impedance spectroscopy (EIS) also confirms this behavior. These results have been further verified by studying the electron lifetimes (τe) and electron diffusion coefficients (De) of a bare TiO2 and a dye-sensitized TiO2 film using a pulsed laser spectrometer. It is noted that both the electron lifetime and the electron diffusion coefficient increase with the increase in annealing temperature. However, the evolution of rutile TiO2 begins beyond 600 °C and this lowers the dye absorbance and the electron diffusion coefficients of TiO2 electrodes. A similar study was made by varying the content of the PEG in the TiO2 films. It is found that with the increase in the PEG content, a decrease in the electron lifetimes and a little hike in the electron diffusion coefficients are noted, where the cell performance remains almost the same. In addition, the dye adsorption decreases the electron lifetime and increases the electron diffusion coefficient of the TiO2 films regardless of the PEG content and the annealing temperature.  相似文献   

5.
The photodegradation of a typical textile blue azo dye, followed by UV–VIS spectra analysis, has been carried out successfully under white light illumination on TiO2/CdO–ZnO nanoporous coupled thin films. A relatively fast degradation occurs in dye solutions with concentrations of 100 mg/l (pH=3), at temperatures of 85°C, and with the aid of 400 mg/l hydrogen peroxide. Photodegradation also occurs on nanoporous TiO2 films but with significant lower efficiency than on TiO2/CdO–ZnO coupled nanoporous films. Dye photodegradation does not occur on TiO2/CdO or TiO2/ZnO nanoporous films, suggesting that both CdO and ZnO components are required on the sensitization of TiO2 nanoporous films. A combined effect of new sensitizing interband states (response to white illumination) and/or rectification phenomena (improved charge separation) may be responsible of the higher photocatalytic activity of the TiO2/CdO–ZnO nanoporous films. Similarly, the alternative route for visible degradation, the photosensitized degradation mechanism, could also benefit from the coupled nanoporous films due to a higher driving force for electron injection (dye oxidation).  相似文献   

6.
Nanocrystalline solar cells were made by incorporation of cis-dithiocyanato-bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) into sputter deposited titanium oxide films. After a pyridine treatment, it was possible to achieve a photoelectric conversion efficiency as high as 7% for a solar intensity of 100 W/m2 – almost the same as for conventional nanocrystalline cells with colloidally prepared titanium oxide. Transmission electron microscopy indicated a parallel penniform microstructure, and secondary ion mass spectroscopy showed that the dye incorporation was uniform except in the bottom parts of the sputtered films where a decreased porosity seems to limit the penetration of the dye.  相似文献   

7.
A solid-state dye-sensitized solar cell comprising dye mixtures of [Ru(2,2-bpy-4,4′-dicarboxylic acid)(NCS)2] and [Ru(4,4′,4″-tricarboxy-2,2;6,2″-terpy)(NCS)3] on TiO2 thin film was fabricated. The different optical properties of dyes results in increased photocurrent and incident photon to photocurrent efficiency (IPCE). The multiple dye system showed the short circuit current (Isc) of 10.2 mA/cm2 and a cell efficiency (η) of 2.8 while broadening the spectral sensitivity of the cell. When a single dye is used, Isc of 6 and 5 mA/cm2 and cell efficiency of 1.7 and 1.2 were observed for [Ru(4,4-bis(carboxy)-bpy)2(NCS)2] (dye 1) and [Ru(2,2′,2″-(COOH)3-terpy)(NCS)3] (dye 2), respectively. Additionally, the resulting IPCE for the solar cell consisting of dye mixture was 50% at wide wavelength range from 530 to 650 nm while for the dye 1, 32% IPCE was observed at 535 nm while for the dye 2, highest IPCE value observed was 20% at 620 nm.  相似文献   

8.
CdO/c-Si solar cells have been made by depositing CdO thin films on p-type monocrystalline silicon substrate by means of the rapid thermal oxidation (RTO) technique using a halogen lamp at 350 °C/45 s in static air. Results on structural, optical, and electrical properties of grown CdO films are reported. The electrical and photovoltaic properties of CdO/Si solar cells are examined. Under AM1 illumination condition, the cell shows an open circuit voltage (VOC) of 500 mV, a short circuit current density (JSC) of 27.5 mA/cm2, a fill factor (FF) of 60%, and a conversion efficiency (η) of 8.84% without using frontal grid contacts and/or post-deposition annealing. Furthermore, the stability of solar cells characteristics is tested.  相似文献   

9.
For photoelectric conversion, three of squarylium cyanine dyes were synthesized and their photoelectrochemical parameters were improved with increase in the adsorption ability of the dyes on nanocrystalline TiO2. A relatively high photoelectric conversion efficiency of 2.17% and the top incident photon-to-photocurrent conversion efficiency of 6.2% at 650 nm for the dye of highest adsorption ability among the three were obtained. Meanwhile, doping cis-Ru[4,4′-(LL)]2 (NCS)2 with 1% of the above-mentioned dye (molar ratio) as a photosensitizer, the photoelectrochemical solar cell made an efficient complement to light-harvesting capacity in almost the whole visible range with the photoelectric conversion efficiency increasing by 12% relative to that of pure cis-Ru[4,4′-(LL)]2 (NCS)2 (L=2,2′-bipyridyl-4,4′-dicarboxylate).  相似文献   

10.
We have demonstrated the effect of pre-thermal treatment of TiO2 nano-particles on the performances of dye-sensitized solar cells (DSCs) by using high specific surface area and anatase only TiO2 nano-particles (ca. 340 m2/g, Sachtleben Chemie GmgH, represented as HK). TiO2 particles and thin films were characterized with X-ray diffraction, FT-IR, UV–Vis diffuse reflectance spectroscopy and FE-SEM. The photoelectrochemical properties of the thin films and the performances of DSCs were measured by photocurrent densities, AC impedance spectra and photocurrent–voltage curves. Before coating the raw TiO2 of HK (HK-raw) on transparent conducting oxide (TCO) glass for DSC fabrication, pre-thermal treatment of HK-raw by calcining at 450 °C (HK-450) was an essential step to achieve the optimum properties in terms of morphological feature, crystallinity, specific surface area and photocurrent density. HK-450 film showed the high adsorption of dye, high photocurrent density and low interface resistance between TiO2 and TCO glass, RTiO2/TCO and TiO2 and redox electrolyte, RCT, resulting in the superior photovoltaic performance on the DSC fabricated with HK-450 and Eosin Y (or ruthenium 535 bis-TBA) at AM 1.5: open-circuit voltage of 0.62 V (0.77 V), short-circuit current of 3.03 mA/cm2 (22.80 mA/cm2), fill factor of 0.57 (0.44) and overall conversion efficiency of 1.06%, (7.52%). Accordingly, the optimization between the morphological feature, specific surface area and photocurrent density of TiO2 substrate is promising to accomplish the improved overall conversion efficiency of DSC.  相似文献   

11.
The effects of hydrothermal temperature on the preparation of TiO2 colloids, and their film thickness on fluorine-doped tin oxide (FTO) glass, toward the performance of a dye-sensitized solar cell (DSSC) were investigated. Pore diameter and surface area of the TiO2 are of paramount importance in determining the cell efficiency. With the increase of hydrothermal temperature, the pore diameter increases linearly; however, the surface area shows the reverse effect. It is found that the DSSC assembled with the TiO2 films prepared under the hydrothermal temperature of 240 °C, and the film thickness larger than 10 μm gives optimal performance. The effect of film thickness of TiO2 on the performance of the DSSC can be explained by the relative size of reactive species diffusing into the thin film and the lifetime of injected electrons. Electrochemical impedance spectroscopy (EIS) was also used to analyze the resistance of the cell, developed as a result of the change in the thickness of the TiO2 thin film. The at-rest stability for over 200 days was monitored and the results show that the solar energy conversion efficiency was found to decrease from 5.0% of initial value to 3.0% at the end.  相似文献   

12.
To evaluate the possibility of using the plasmon resonance effect to enhance the efficiency of photochemical cells, cis-(SCN)2Bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) dye-sensitized cells were used to measure the photoresponse of TiO2 film electrodes before and after deposition of Ag particles. The deposited Ag particles created a film with Ag islands. We found that the photoresponse in the visible region increased as the mass-equivalent Ag-island film thickness, tAg, increased to 3.3 nm, but decreased when tAg was further increased to 6 nm. On the other hand, compared with bare TiO2 films, the photoresponse in the UV region decreased for any level of Ag islands. These results suggest that under proper conditions, enhancement of the optical absorption of the dye by the Ag plasmon resonance effect contributes to the photocurrent, and indicates the possibility of improving the energy conversion efficiency of photoelectrochemical cells with Ag-island films.  相似文献   

13.
We have investigated the influence of electrolyte composition on the photovoltaic performance of a dye-sensitized nanocrystalline TiO2 solar cell (DSSC) based on a Ru(II) terpyridyl complex photosensitizer (the black dye). We have also spectroscopically investigated the interaction between the electrolyte components and the adsorbed dye. The absorption peaks attributed to the metal-to-ligand charge transfer transitions of the black dye in solution and adsorbed on a TiO2 film, were red-shifted in the presence of Li cations, which led to an expansion of the spectral response of the solar cell toward the near-IR region. The photovoltaic performance of the DSSC based on the black dye depended remarkably on the electrolyte composition. We developed a novel efficient organic liquid electrolyte containing an imidazolium iodide such as 1,2-dimethyl-3-n-propylimidazolium iodide or 1-ethyl-3-methylimidazolium iodide (EMImI) for a DSSC based on the black dye. A high solar energy-to-electricity conversion efficiency of 9.2% (Jsc=19.0 mA cm−2, Voc=0.67 V, and FF=0.72) was attained under AM 1.5 irradiation (100 mW cm−2) using a novel electrolyte consisting of 1.5 M EMImI, 0.05 M iodine, and acetonitrile as a solvent with an antireflection film.  相似文献   

14.
We have designed tripyridine-thiolato (4,4,4-tricarboxy-2,2:6,2-terpyridine)ruthenium(II) [complex 1], a novel efficient sensitizing dye for dye sensitized TiO2 solar cells, based on the DFT MO calculations with PBE0 functional. Complex 1 is a modified BD (black dye: trithiocyanato (4,4,4-tricarboxy-2,2:6,2-terpyridine)ruthenium(II) complex) molecule where NCS ligands of BD are replaced by C5H4NS ligands. Molecular and electronic structures of complex 1 have been theoretically characterized. Complex 1 is expected to have the following two advantages over BD, in addition to the advantage of high electron transfer rate from the photoexcited dye to TiO2 realized in BD: (1) higher electron transfer rate from redox systems to oxidized dyes; (2) higher absorption efficiency to solar spectrum. We propose complex 1 as a novel efficient sensitizing dye which provides the higher efficiency than does BD for dye sensitized solar cells.  相似文献   

15.
A chemical dispersing technique for preparing a coating paste of TiO2 nanoparticles is disclosed to fabricate mesoporous electrodes for dye-sensitized TiO2 solar cells. The suspension of TiO2 (P-25) powder was stirred in aqueous nitric acid at 80°C, and then evaporated to dryness, giving the nitric acid-adsorbed P-25 powder. The coating paste was obtained by mixing the nitric acid-adsorbed P-25 with PEG (Mw 20,000) as a porosity-controlling agent and cellulosic polymer as a thickener. The mesoporous TiO2 films were fabricated on conducting glasses by repetitive coating and calcined at 500°C (30 min). The TiO2 film obtained by the five times repetitive coating (20 μm thickness) resulted in the 1.4 times higher energy conversion efficiency of the dye-sensitized solar cells than that of the one time coating TiO2 film (Voc=690 mV, Jsc=12.2 mA/cm2, the fill FACTOR=0.71 and η=6.0%).  相似文献   

16.
Xylenol orange (3,3′-bis[N,N-di(carboxymethyl)aminomethyl]-o-cresolsulfonephthalein), which is a water-soluble dye of the triphenylmethane group, was tested for a dye-sensitized solar cell. The observed short-circuit current (2.2 mA cm−2) was compared with the theoretical value (3.8 mA cm−2) which was estimated from the radiation spectrum of light source and the absorption spectrum of adsorbed dye on TiO2. The overall energy efficiency was 1.3%. The addition of 0.5 M water in the electrolyte did not show a bad effect. A molecule of xylenol orange occupied 1.48 nm2 of the TiO2 surface. The roughness factor of the utilized TiO2 electrode was 630.  相似文献   

17.
We developed new heat-resisting transparent conductive oxide (TCO) films with resistivity of 1.4×10−4 Ω cm, an optical transmittance of above 80% (at 550 nm) and heat-resisting temperature at above 600 °C. The TCO films consists of fluorine-doped tin oxide films coated on indium–tin oxide films. They were prepared by a spray pyrolysis deposition method on glass substrates. The 100×100 mm2 dye-sensitized solar cells (DSCs) were prepared with the TCO films. An energy conversion efficiency of the DSC was improved drastically in comparison to the case with conventional TCO films.  相似文献   

18.
Spray deposition of powder suspensions followed by room temperature compression was studied as a method for preparing nanostructured TiO2 films for dye-sensitized solar cells. The structure of the films was analyzed with optical and scanning electron microscopy and the films were applied to dye-sensitized solar cells. Continuous and fast deposition of crack-free 7–14 μm thick films was achieved by heating the substrates during the deposition. Scanning electron microscopy revealed small amount of structural imperfections in the compressed films due to the nature of the deposition method. An energy conversion efficiency of 2.8% was achieved at 100 mW/cm2 light intensity.  相似文献   

19.
Porous films of titanium oxide were deposited by oblique reactive electron beam evaporation. Both as-deposited and annealed samples of these films were structurally characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The as-deposited films were found to consist of amorphous columns with a very fine structure while the annealed films consisted of polycrystalline anatase columns whose fine structure showed evidence of conglomeration. These films were sensitized with a photoactive dye and implemented into a dye sensitized solar cell (DSSC) configuration as the electron collecting electrode. Solar cells incorporating annealed titanium oxide films fabricated at deposition angles between 60° and 75° produced higher short current densities than conventional DSSC based on colloidal TiO2 film measured under the same conditions. The best performing solar cell incorporating annealed titanium oxide films was found to have a photoelectric conversion efficiency of 4.1%.  相似文献   

20.
Dye-sensitized solar cells based on nanoporous oxide semiconductor thin films such as TiO2, Nb2O5, ZnO, SnO2, and In2O3 with mercurochrome as the sensitizer were investigated. Photovoltaic performance of the solar cell depended remarkably on the semiconductor materials. Mercurochrome can convert visible light in the range of 400–600 nm to electrons. A high incident photon-to-current efficiency (IPCE), 69%, was obtained at 510 nm for a mercurochrome-sensitized ZnO solar cell with an I/I3 redox electrolyte. The solar energy conversion efficiency under AM1.5 (99 mW cm−2) reached 2.5% with a short-circuit photocurrent density (Jsc) of 7.44 mA cm−2, a open-circuit photovoltage (Voc) of 0.52 V, and a fill factor (ff) of 0.64. The Jsc for the cell increased with increasing thickness of semiconductor thin films due to increasing amount of dye, while the Voc decreased due to increasing of loss of injected electrons due to recombination and the rate constant for reverse reaction. Dependence of photovoltaic performance of mercurochrome-sensitized solar cells on semiconductor particles, light intensity, and irradiation time were also investigated. High performance of mercurochrome-sensitized ZnO solar cells indicate that the combination of dye and semiconductor is very important for highly efficient dye-sensitized solar cells and mercurochrome is one of the best sensitizers for nanoporous ZnO photoelectrode. In addition, a possibility of organic dye-sensitized oxide semiconductor solar cells has been proposed as well as one using metal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号