首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
稳定的数字控制驱动电源是压电陶瓷型微喷头正常工作的关键.提出了一种波形发生方案,并根据此方案设计了一种以单片机AT89S8252以及波形发生芯片MAX038为主体的新型压电陶瓷微喷头驱动控制电源.该电源具有较高的精度、高分辨率和很宽的动态范围,响应速度快,驱动能力强.整个电源系统最大的特点是脉冲的宽度及占空比完全数字控制,调试灵活方便.  相似文献   

2.
稳定的数字控制驱动电源是压电陶瓷型微喷头正常工作的关键。提出了一种波形发生方案,并根据此方案设计了一种以单片机AT89S8252以及波形发生芯片MAX038为主体的新型压电陶瓷微喷头驱动控制电源。该电源具有较高的精度、高分辨率和很宽的动态范围,响应速度快,驱动能力强。整个电源系统最大的特点是脉冲的宽度及占空比完全数字控制,调试灵活方便。  相似文献   

3.
高速压电陶瓷驱动电源   总被引:1,自引:0,他引:1  
王元生  芦志强  王雨 《现代电子技术》2009,32(14):180-181,184
为了满足压电陶瓷致动器对驱动电源动态冲击特性的要求,提出一种新型的压电陶瓷驱动电源.用高速运放OP467作为核心芯片,搭建功率放大电路及恒流源泄放电路,并给出详细的电路原理图.实验表明,在输入为方波等动态信号时,该驱动电源可以良好地跟随输入波形变化,具有较高的上升和下降速率,频响范围可达到100 Hz~60 kHz.在同类型高压放大器中,其成本低廉,结构简单.  相似文献   

4.
赵轩毅  马力辉 《电子测试》2015,(1):62-63,47
设计了一种新型大功率压电陶瓷驱动电源。该电源由普通的低压运算放大器以及高压三极管搭建而成。采用负反馈以及相位补偿的原理,将输入的小电压的控制信号线性放大到大电压、高功率的驱动信号,用于驱动大容量的压电陶瓷。最后通过实验对驱动电源进行了测试,结果表明该电源输出精度高,响应快,稳定性好。该电源电路简单,成本低,因此具有很高的实用价值。  相似文献   

5.
低频压电陶瓷驱动器驱动电源研制   总被引:11,自引:7,他引:4  
针对压电扫描驱动器的工作特点研制了一种压电陶瓷驱动器专用功率放大器 ,它可给驱动器提供很高的电压输出 (± 2 0 0 V(峰 -峰值 ) ) ,并且使驱动器在 5 0~ 2 0 0 Hz的工作频率进行扫描 ,也可适用于以逆压电效应为基本原理的压电器件在以动态输出为主要目的情况下应用。在同时考虑压电陶瓷驱动器的电子和机械两种性质的情况下 ,提出了一种新的功率放大器的设计方案 ,利用添加补偿电容和补偿电阻的方法来补偿自激的反馈极点  相似文献   

6.
压电陶瓷动态应用的新型驱动电源研究   总被引:18,自引:11,他引:18  
在分析现有直流放大压电陶瓷驱动电源原理及其局限性的基础上,提出了一种新型的压电陶瓷驱动电源,并给出了详细的电路原理图。对压电陶瓷进行的动态驱动实验表明,在输入为三角波、方波等动态信号,该驱动电源可以很好的跟限输入波形的变化,显示出优异的动态性能,可以满足科研实践中提出的需求。  相似文献   

7.
一种压电陶瓷执行器动态驱动电源   总被引:1,自引:1,他引:1  
针对压电陶瓷执行器呈现强容性负载的特性,该文研究了基于误差放大原理的压电陶瓷执行器动态驱动电源,提出采用高压运算放大器结合准互补对称功率放大电路构成的输出级以提高驱动电源的输出电压范围的方法和采用多组准互补对称功率放大电路构成的输出级并联以提高输出峰值功率的方法。通过对实际电路的测试表明,采用上述方法开发的压电陶瓷执行器动态驱动电源不仅输出功率达270 W,且具有良好的静态性能。  相似文献   

8.
本文采用高压大带宽MOSFET运放PA92和高精度运放OP07设计了一种基于电压控制型的可动态压电陶瓷驱动电源。该驱动电源由放大电路、功率放大电路、过流保护电路和负反馈环节组成。克服了目前常用的压电陶瓷驱动电源所存在的成本高、驱动能力不足、静态纹波大等缺点。最后对实际电路的各项性能进行了测试和分析,结果表明:该电路具有良好的动态和静态性能,能够很好的满足驱动压电微位移平台的要求。  相似文献   

9.
基于PA85的新型压电陶瓷驱动电源   总被引:6,自引:0,他引:6  
李福良  张辉 《电子质量》2004,(1):J014-J015
压电陶瓷驱动电源是压电陶瓷微位移器应用中关键部件.PA85是一种高压、高精度的MOSFET运算放大器.文章介绍了一种基于PA85的新型压电陶瓷驱动电源,详细介绍了电源复合放大电路部分的设计原理和并对其稳定性进行了分析.该电源具有精度高,驱动能力强,结构简单,稳定性好的特点.  相似文献   

10.
压电陶瓷驱动器线性动态驱动电源的研制   总被引:13,自引:3,他引:10  
根据压电陶瓷基本物理参数计算出压电驱动电源的最小基本性能参数,并利用高压运放研制了一种新型压电陶瓷驱动器的驱动电源,它具有高的输出电压范围(±200V),高输出电流(200mA,峰值电流300mA)。并且通过对反馈电路的波特图分析,讨论了自激震荡的产生和防止。在试验中通过对压电驱动器的正弦信号激励分析,表明驱动电源在带负载时有良好的输入跟随性能,能够满足复杂压电驱动器控制需要。  相似文献   

11.
一种高速压电陶瓷驱动器驱动电源设计   总被引:1,自引:0,他引:1  
刘岩  邹文栋 《压电与声光》2008,30(1):48-49,52
利用转移和压缩控制信号的方法寻求放大器件最佳线性放大区域,设计出一种高速的压电陶瓷驱动电源。由于电压放大部分不含比较以及反馈成分,减少了容性结构,从而提高了整体响应时间。对小推力叠层型压电陶瓷的实验表明,该驱动电源的响应时间接近1.5μs,最高交流响应频率达500 kHz。  相似文献   

12.
朱婷 《电子科技》2016,29(5):13
在研究压电陶瓷微位移器的基础上,针对压电陶瓷的驱动特点和要求,设计了一种驱动电源。以单片机Atmega128和高压运算放大器PA78为核心器件,以及相关电路构成电压控制型驱动电源。介绍了主要模块电路的功能和实现,并对驱动电源进行测试实验。驱动电源可输出0~300 V连续电压,分辨率可达10 mV、静态纹波<5 mV。结果表明该电源具有线性度高、稳定性好、分辨率高等优点。  相似文献   

13.
作为电压控制型器件,压电陶瓷驱动电源的稳定性受负载电容量变化的影响严重。针对负载等效电容在驱动电压变化下的动态特性,首次提出了一种基于容性负载的压电驱动电源。该电源采用RC前置滤波与电容超前反馈相结合,提高了系统稳定性与驱动电源的鲁棒性。分析结果表明,额定负载为1.5μF的驱动电源优化后在0~3μF内具有良好的动态性能,且输出电压精度达0.7 mV。  相似文献   

14.
为了满足压电陶瓷在振动平台微位移测试系统中输出更大范围的微位移及保持更高精度的条件,设计了一种高压大电流、带有直流偏置可连续调频调幅的正弦波输出压电陶瓷驱动电源。该文介绍了该驱动电源的设计方案、关键电路设计、控制系统软件设计及实验测试。该驱动电源以全桥逆变电路、隔离直流-直流抬压电路为核心,采用电压、电流双闭环比例-积分控制正弦脉宽调制(SPWM)波的基波来调节输出电压。通过搭建实验平台,验证了当压电陶瓷电容为5μF时,该驱动电源能实现在5 Hz~1 kHz频响内电压100倍增益放大,输出0~1 000 V的动态正弦电压,最大输出功率达到7 kW。结果表明,设计的压电陶瓷驱动电源具有输出电压高,输出功率大,频率响应快,且减小了电源整机体积和质量。  相似文献   

15.
一种叠层式压电陶瓷降压变压器   总被引:1,自引:0,他引:1  
介绍了一种叠层式压电陶瓷降压变压器的基本结构、工作原理、等效电路以及通过等效电路法所计算的结果;介绍了这种变压器实验性能指标;介绍制作这种变压器对材料性能的要求及研究现状。  相似文献   

16.
提出一种压电材料的新型线性高电压驱动器的研制方案,驱动器包括两大部分,即大功率、可对压电作动器进行正负向电压加载的闭环倍压放大式线性高电压驱动器;基于固态继电器的ON/OFF驱动器,内含压电作动器的电压加载控制模块和快速放电控制模块。该驱动器线性输出电压为直流电压(-220~+220V),输出频率可达3kHz。  相似文献   

17.
姚立强  刘收  王益红  陈志同 《压电与声光》2006,28(3):303-304,307
根据用于烈性药物输注的便携式压电微型泵的使用要求,研制了压电陶瓷驱动器的驱动电源。驱动电源以3 V锂离子钮扣电池供电,通过DC/DC电路和逆变电路为压电陶瓷驱动器提供高的输出电压(200 V,峰-峰值),具有频率可调,体积小,质量轻,功耗低,安全可靠,便于控制的特点。实验表明,驱动电源能满足压电微型泵的使用要求,也适用于以逆压电效应为基本原理的微小压电器件的动态应用。  相似文献   

18.
压电陶瓷电源控制系统的设计与实现   总被引:1,自引:0,他引:1  
林伟  冯海 《现代电子技术》2007,30(16):44-45,52
根据压电陶瓷微定位系统的要求,在构成闭环控制系统时,需要控制器应用VC 编程语言编写的控制程序通过PC机的串口,给单片机发送控制命令,实现对压电陶瓷驱动电源的控制。通过对压电陶瓷电源驱动控制的实验表明,电源控制系统具有结构简单、性能稳定和精度高等优点,能够较好地满足微定位系统中压电陶瓷驱动电源的控制要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号