首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 77 毫秒
1.
网络攻击具有多样性和隐蔽性,为了提高网络安全性入侵检测的正确率,提出一种混沌粒子群算法(CPSO)和最小二乘支持向量机(LSSVM)相融合的网络入侵检测方法(CPSO-LSSVM)。利用混沌粒子群算法对LSSVM模型参数进行搜索,选择LSSVM最优参数,采用KDDCUP99数据集对CPSO-LSSVM性能进行测试,实验结果表明,CPSO-LSSVM提高了网络入侵检测正确率,降低了误报率,可以为网络安全提供有效保证。  相似文献   

2.
为了提高网络入侵检测率,提出一种协同量子粒子群算法和最小二乘支持向量机的网络入侵检测模型(CQPSO-LSSVM)。将网络特征子集编码成量子粒子位置,入侵检测正确率作为特征子集优劣的评价标准,采用协同量子粒子群算法找到最优特征子集,采用最小二乘支持向量机建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。结果表明,CQPSO-LSSVM获得了比其他入侵检测模型更高的检测效率和检测率。  相似文献   

3.
基于聚类的LS-SVM的入侵检测方法研究   总被引:1,自引:0,他引:1  
本文针对最小二乘法支持向量机在入侵检测中的训练效率低下的缺点,将聚类方法应用其中。该方法主要用来对数据集进行剪枝,有效地减少距离分类面较远的数据集合数量,而使用靠近聚类中心的数据集合作为有效的样本集合,减少样本的训练时间,提高训练效率。实验表明,使用聚类方法提高了最小二乘法支持向量机的训练效率,而且对入侵检测有很好的效果。  相似文献   

4.
网络入侵检测一直是网络安全领域中的研究热点,针对分类器参数优化难题,为了提高网络入侵检测准确性,提出一种改进粒子群算法和支持向量机相融合的网络入侵检测模型(IPSO-SVM).首先将网络入侵检测率作为目标函数,支持向量机参数作为约束条件建立数学模型,然后采用改进粒子群算法找到支持向量机参数,最后采用支持向量机作为分类器建立入侵检测模型,并在Matlab 2012平台上采用KDD 999数据进行验证性实验.结果表明,IPSO-SVM解决了分类器参数优化难题,获得更优的网络入侵分类器,提高网络入侵检测率,虚警率和漏报率大幅度下降.  相似文献   

5.
为改善网络安全防护水平,提出一种基于偏最小二乘(PLS)法和核向量机(CVM)的组合式异常入侵检测方法.首先,采用PLS算法提取网络数据的主成分,构建特征集;然后,利用CVM构建特征集的异常入侵检测模型,进而完成异常入侵检测和判定.仿真实验结果表明,所提出的方法具有CVM的大规模数据快速处理能力,而且检测性能与L1-SVM和L2-SVM大致相当,尤其主成分数 为1538时能保持相对较高的检测水平,验证了将其用于异常入侵检测的有效性和可行性.  相似文献   

6.
为了提高网络入侵检测率,提出一种反向学习粒子群算法和多层次分类器相融合的网络入侵检测模型。首先将反向学习粒子群算法优化最小二乘支持向量机,以提高分类性能;然后利用由粗到精策略构造多层的网络入侵分类器降低计算时间杂度复;最后采用KDD 99数据集进行仿真测试。仿真结果表明,相对于其他检测模型,该模型不仅提高了网络入侵检测率,降低了入侵检测误报率,同时加快了入侵检测速度,为网络安全提供了有效保证。  相似文献   

7.
基于支持向量机和最小二乘支持向量机的入侵检测比较   总被引:2,自引:0,他引:2  
将支持向量机和最小二乘支持向量机用于入侵检测之中,利用主元分析对数据进行约简,然后使用SVM和 LS-SVM对数据进行训练和测试.基于KDDCUP'99做了三组对比实验,对支持向量机和最小二乘支持向量机的性能做了统计.实验结果表明,SVM比LS-SVM分类能力强,但是LS-SVM耗时较少.  相似文献   

8.
为了提高网络入侵的检测正确率,针对网络入侵检测中特征选择问题,将二值粒子群优化算法(BPSO)用于网络入侵特征选择,结合支持向量机(SVM)提出了一种基于BPSO-SVM的网络入侵检测算法。该算法将网络入侵检测转化为多分类问题,采用wrapper特征选择模型,以SVM为分类器,通过样本训练分类器,根据分类结果,利用BPSO算法在特征空间中进行全局搜索,选择最优特征集进行分类。实验结果表明,BPSO-SVM有效降低了特征维数,显著提高了网络入侵的检测正确率,还大大缩短了检测时间。  相似文献   

9.
入侵检测系统面临的主要问题是计算量大,特征选择被引入解决这一问题。针对现有方法的缺点,利用改进的粒子群算法来搜索最优特征子集,提出了一种基于混合CatfishPSO和最小二乘支持向量机的特征选择方法,利用混合的CatfishBPSO和CatfishPSO选择特征子集并同步对LSSVM的参数进行优化,最后建立了一个基于该特征选择方法的入侵检测模型。在KDD Cup 99数据集上进行的实验结果表明该模型的检测性能较高。  相似文献   

10.
提出了基于粗糙集和改进最小二乘支持向量机的入侵检测算法。算法利用粗糙集理论的可辨识矩阵对样本属性进行约简,减少样本维数;利用稀疏化算法对最小二乘支持向量机进行改进,使其既具备稀疏化特性又具备快速检测的特点,提高了数据样本分类的准确性。结合算法不仅充分发挥粗糙集对数据有效约简和支持向量机准确分类的优点,同时克服了粗糙集在噪声环境中泛化性较差,支持向量机识别有效数据和冗余数据的局限性。通过实验证明,基于粗糙集和改进最小二乘支持向量机的入侵检测算法的检测精度高,误报率和漏报率较低,检测时间短,验证了算法的实效性。  相似文献   

11.
笔者针对网络特征选择问题,提出一种鲶鱼粒子群算法选择特征的支持向量机网络入侵检测(EPSO-SVM)。首先将"鲶鱼效应"因子引入粒子群优化算法,将网络特征子集编码成粒子位置串,其次将入侵检测率作为特征子集选择目标函数,通过鲶鱼粒子群找到最优特征子集,最后支持向量机根据最优特征子集构建网络入侵分类器,在KDDCup99数据集上进行仿真测试。结果表明,EPSO-SVM不仅能提高网络入侵检测率和检测速度,而且适用于现实高速网络应用环境。  相似文献   

12.
基于支持向量机的网络入侵检测   总被引:48,自引:3,他引:48  
将统计学习理论引人入侵检测研究中,提出了一种基于支持向量机的入侵检测方法(SVM-Based ID).针对入侵检测所获得的高维小样本异构数据集,将SVM算法在这种异构数据集上进行推广,构造了基于异构数据集上HVDM距离定义的RBF形核函数,并基于这种核函数将有监督的C-SVM算法和无监督One-Class SVM算法用于网络连接信息数据中的攻击检测和异常发现,通过对DARPA数据的检测试验结果表明提出的方法是可行的、高效的.  相似文献   

13.
基于PSO和LSSVM的生化过程建模研究   总被引:2,自引:0,他引:2  
针对最小二乘支持向量机(LSSVM)在生化过程建模中的重要建模参数值选择问题.提出利用具有较强的全局搜索能力的粒子群(PSO)优化算法.对最小二乘支持向量机建模过程中的重要参数进行优化调整,每一个粒子的位置向量对应一组最小二乘支持向量机建模的参数.利用参数优化调整后得到的具有较优拟合预测效果的模型对谷氨酸发酵过程进行预测,仿真结果表明,该方法能使模型取得较好的预测效果.  相似文献   

14.
刘春 《计算机系统应用》2014,23(10):147-151
为了提高网络流量的预测精度,考虑到网络流量的长相关、非线性等特性,提出一种粒子群算法优化最小二乘支持向量机参数的网络流量预测模型(PSO-LSSVM).首先将最小二乘支持向量机参数作为粒子的位置向量,然后利用粒子群算法找到模型的最优参数,最后采用最优参数最小二乘支持向量机建立网络流量预测模型.仿真结果表明,相对于参比模型,PSO-LSSVM能够获得更高的网络流量预测精度,更能准确描述网络流量变化规律.  相似文献   

15.
为了提高作物需水量预测精度,提出基于粒子群优化算法(PSO)优化最小二乘支持向量机(LS-SVM)的预测模型。该模型以空气湿度、温度、太阳辐射以及风速为输入,利用多项式核函数和径向基核函数的非负线性组合构造核函数,将粒子群优化算法(PSO)与交叉验证方法用于确定模型参数。实验结果表明与神经网络和随机森林相比,PSO优化的LS-SVM可获得更好的预测精度和泛化能力,可用于节水灌溉,具有较高的应用价值。  相似文献   

16.
入侵检测系统是任何一个完整的网络安全系统中必不可缺的部分.日益严峻的安全问题对于检测方法提出更高的要求.传统的入侵检测方法存在误报漏报及实时性差等缺点,将机器学习的技术引入到入侵监测系统之中以有效地提高系统性能具有十分重要的现实意义.支持向量机(SVM)是一种建立在统计学习理论(SLT)基础之上的机器学习方法,被成功地应用到入侵检测领域中.讨论了支持向量机优化算法及其在入侵检测中的应用.实验表明,基于优化支持向量机检测入侵的方法能较大地提高入侵检测系统的性能.  相似文献   

17.
基于模糊支持向量机的网络入侵检测研究   总被引:3,自引:0,他引:3  
李华  张简政 《计算机科学》2005,32(11):77-80
模糊支持向量机理论属于统计学习理论,是支持向量机理论的推广,使支持向量机更好地运用到实际工作中。我们将其运用到网络入侵检测中,实验证明是可行的、高效的,有其特点和优势的。  相似文献   

18.
《计算机工程》2017,(12):248-254
针对传统主成分分析(PCA)算法提取人脸特征时效率低下的问题,对其求解样本协方差矩阵的特征值和特征向量的过程进行改进,提出一种基于快速PCA降维算法的人脸识别方法。使用交叉验证方法,将支持向量机(SVM)模型训练时的识别准确率作为粒子群的适应度值,利用粒子群优化算法对SVM惩罚参数和核函数参数进行全局寻优,得到参数的全局最优解,用于训练最终的分类器模型进行人脸识别。通过对ORL和Yale数据库中的人脸图像进行实验,结果表明,与传统PCA算法结合SVM模型的识别方法相比,该方法对于人脸图像具有更高的特征提取效率及识别准确率。  相似文献   

19.
基于APSO—LSSVM的软测量建模研究   总被引:3,自引:0,他引:3  
针对最小二乘支持向量机在生化过程建模中的重要建模参数值选择问题,提出利用具有较强的全局搜索能力的自适应粒子群(APSO)优化算法,对最小二乘支持向量机建模过程中的重要参数进行优化调整,每一个粒子的位置向量对应一组最小二乘支持向量机建模的参数。利用参数优化调整后得到的具有较优拟和预测效果的模型对谷氨酸发酵过程进行预测,仿真结果表明该方法能使模型取得较好的预测效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号