首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sulfation model was developed for dry flue gas desulfurization (FGD) at moderate temperatures to describe the reaction characteristics of the T-T sorbent clusters and the fine CaO particles that fall off the sorbent grains in a circulating fluidized bed (CFB) reactor. The cluster model describes the calcium conversion and reaction rate for various size sorbent clusters. The sulfation reaction is first order with respect to the SO2 concentration above 973 K. The calcium conversion and reaction rate for the CaO particles were obtained by extrapolation. In the model for CaO particle, the reaction rate is linearly related to the calcium conversion and the SO2 concentration in the rapid reaction stage and linearly related only with the calcium conversion after the product layer forms. The sulfation model accurately describes the sulfation of the T-T sorbent flowing through a CFB reactor. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

2.
Much SO2, another perilous air pollutant, was emitted during the oxidative regeneration of sulfided sorbent by H2S. In order to prevent emission of SO2, we carried out oxidative regeneration with the physical mixture of CaO and sulfided sorbent and investigated the effect of regeneration temperature and oxygen concentration on the reactivity of CaO with S02. The effluent gases were analyzed by G.C. and the properties of sorbent were characterized by XRD. SEM, TG/DTA and EPMA. Deterioration of reactivity of CaO with S02 resulted in increment of emission of SO12 due to the structural changes of CaO above 750°C and that at 850°C was more severe. Furthermore EPMA and XRD analysis revealed that product layer diffusion through the solid product, CaSO4, was the rate limiting step for CaO sulfidation. The reaction of CaO w:.th SO2 was first order approximately and that was accelerated by high O2 concentration.  相似文献   

3.
Yuran Li  Changfu You  Lizhai Yang 《Fuel》2010,89(8):2081-668
An empirical sulfation model for T-T sorbent clusters was developed based on amassed experimental results under moderate temperatures (300-800 °C). In the model, the reaction rate is a function of clusters mass, SO2 concentration, CO2 concentration, calcium conversion and temperature. The smaller pore volume partly results in a lower reaction rate at lower temperatures. The exponent on SO2 concentration is 0.88 in the rapid reaction stage and then decreases gradually as reaction progresses. The exponent on the fraction of the unreacted calcium is 1/3 in the first stage and then increases significantly in the second stage. The CO2 concentration has a negative influence on SO2 removal, especially for the temperature range of 400-650 °C, which should be avoided to achieve a high effective calcium conversion. The sulfation model has been verified for the T-T sorbent clusters and has also been applied to CaO particles. Over extensive reaction conditions, the predictions agree well with experimental data.  相似文献   

4.
Phosphogypsum (PG) severely pollutes the environment and is difficult to recycle. PG is primarily composed of CaSO4 · 2H2O. In this study, the characteristics of SO2 released from the solid–solid reaction between calcium sulphide (CaS) and CaSO4 were thoroughly investigated using thermodynamic calculations. Experiments were performed by tuning the molar ratio of CaS to CaSO4, reaction atmosphere (S, CH4, N2, and air), and the heating rate. As shown by the phase diagram, high reaction temperatures favour CaO stability, and the corresponding maximum SO2 equilibrium partial pressure increases. The total SO2 production significantly increased with increasing molar ratio and slightly increased when the ratio exceeded 1:3. The SO2 productions were ranked from highest to lowest as follows: S, CH4, N2, CO, and air. The total SO2 production decreased with increasing heating rate. For the reaction between CaS and CaSO4, a higher molar ratio of CaS to CaSO4 no less than 1:3, both S and CH4 reductive atmospheres, and a lower heating rate (2°C/min) favour the total SO2 emission.  相似文献   

5.
The combined effect of H2O and SO2 on the reaction kinetics and pore structure of limestone during simultaneous calcination/sulfation reactions under circulating fluidized bed (CFB) conditions was first studied in a constant-temperature reactor. H2O can accelerate the sulfation reaction rate in the slow-sulfation stage significantly but has a smaller effect in the fast-sulfation stage. H2O can also accelerate the calcination of CaCO3, and should be considered as a catalyst, as the activation energy for the calcination reaction was lower in the presence of H2O. When the limestone particles are calcining, SO2 in the flue gas can react with CaO on the outer particle layer and the resulting CaSO4 blocks the CaO pores, increases the diffusion resistance of CO2, and, in consequence, decreases the calcination rate of CaCO3. Here, gases containing 15% H2O and 0.3% SO2 are shown to increase the calcination rate. This means that the accelerating effect of 15% H2O on CaCO3 decomposition is stronger than the impeding effect caused by 0.3% SO2. The calcination rate of limestone particles was controlled by both the intrinsic reaction and the CO2 diffusion rate in the pores, but the intrinsic reaction rate played a major role as indicated by the effectiveness factors determined in this work. This may explain the synergic effect of H2O and SO2 on CaCO3 decomposition observed here. Finally, the effect of H2O and SO2 on sulfur capture in a 600 MWe CFB boiler burning petroleum coke is also analyzed. The sulfation performance of limestone evaluated by simultaneous calcination/sulfation is shown to be much higher than that by sulfation of CaO. Based on our calculations, a novel use of the wet flue gas recycle method was put forward to improve the sulfur capture performance for high-sulfur low-moisture fuels such as petroleum coke. © 2019 American Institute of Chemical Engineers AIChE J, 65: 1256–1268, 2019  相似文献   

6.
Sorption of sulfur dioxide (SO2) was carried out on calcium‐based sorbents under dynamic conditions in a fixed bed. The experimental conditions were reaction temperature (700 to 1000°C), SO2 concentration (1000‐10 000 ppm), sorbent particles size (1 to 2 mm) and the types of sorbents (hydroxide or carbonate). The sorption process was found to be effective at low concentration levels (less than 10 000 ppm) as the breakthrough time significantly decreased with increase in concentration. The maximum removal of SO2 was observed at a reaction temperature of 950°C. The hydroxide‐based sorbents of relatively smaller particle size were found to exhibit superior sorption performance in terms of longer breakthrough time and higher sulfate conversion. A mathematical model developed, assuming a porous structure of the sorbent materials, attributed the low sulfation conversion during SO2 sorption due to a pore diffusion mechanism.  相似文献   

7.
Shengji Wu  Shinsuke Nagamine 《Fuel》2004,83(6):671-677
CaS formed from the CaO sorbent during desulfurization in coal gasifiers has to be converted to CaSO4 before disposal. CaS is mainly decomposed to CaO and SO2 by O2 and then CaO is converted to CaSO4 by SO2 and O2. The role of H2O in the oxidative decomposition of CaS with O2 was studied using reagent grade CaS and H218O. The following results were obtained: (1) there is a synergistic effect of H2O and O2 on the oxidative decomposition of CaS to CaO and SO2; (2) H2O reacts with CaS to form CaO, SO2 and H2 in the absence of O2; (3) the oxidative decomposition of CaS to CaO and SO2 occurs stepwise; (4) H2O directly reacts with CaS in the presence of O2; (5) H2O plays an important role in the oxidative decomposition of CaS even if the O2 concentration is high.  相似文献   

8.
Furnace sorbent injection (FSI) is used to remove SO2 formed during coal combustion by injecting sorbent into the high temperature zone of a furnace above the fireball. FSI is cost effective for older coal-fired boilers, especially when space or capital budgets are limited. To optimize the design and performance of FSI, an SO2/sorbent modeling scheme that simultaneously considers calcination (or dehydration), sintering, and sulfation has been developed and implemented. It is coupled with a three-dimensional combustion model based on computational fluid dynamics to determine the most desirable locations for sorbent injection and to optimize the amount of sorbent needed to achieve a targeted SO2 removal efficiency. A sensitivity analysis was conducted to determine the effect of flue gas temperature, particle diameter, and SO2 concentration on the extent of sulfation. This SO2/sorbent sub-model was applied to a 126-MW front-wall fired boiler firing eastern bituminous coal. The SO2 removal efficiencies predicted by the model agreed well with those measured in the field. The modeling results indicated that sorbent injected directly into the furnace through boosted over-fired air ports is more effective at removing SO2, due to longer residence time and better mixing, relative to ports higher in the furnace with poor mixing. This modeling approach is optimized for full-furnace application to facilitate the design process.  相似文献   

9.
The dry reaction between SO2 and limestone has been investigated at low temperatures. The study was focused on the wet-dry scrubbing application. Parameters investigated included: temperature: 313–353 K, SO2 concentration: 50–4000 ppm, oxygen concentration: 0–9 percent, carbon dioxide concentration: 0–10 percent, relative humidity 0–92 percent, limestone panicle diameter: 4–100 microns, and limestone conversion: 0–95 percent. The study has revealed that the relative humidity, the particle diameter and the limestone conversion have the most dramatic impacts on the reaction rate. A suggested reaction mechanism is outlined in great detail.  相似文献   

10.
The existing fluidized bed combustion literature on sulfation shows that above 30% conversion, direct sulfation via reaction with CaCO3 is faster than indirect sulfation with CaO. However, while this is true for dry flue gases, it is not the case if steam (H2O(g)) is present at realistic levels for coal combustion, and it has been confirmed by experiments employing thermogravimetric analysis (TGA) and tube furnace (TF) testing that direct sulfation is in fact slower than indirect sulfation for nearly all levels of conversion if steam (H2O(g)) is present. In this work we have also examined the effects of H2O(g) on SO2 capture and NH3 oxidation to NOx over calcium-containing compounds under air- and oxy-fired conditions in a pilot-scale circulating fluidized bed combustor (CFBC) utilizing limestone addition. The results of the pilot-scale tests confirm suggestions from our previous work that sulfur capture from the air firing of low-moisture fuels benefits from steam-sulfation. For petroleum coke, the addition of 8%vol H2O(g) resulted in increased SO2 retention and Ca utilization, as well as decreased NOx emissions by up to 44%. The simultaneous reduction of SO2 and NOx was attributed to enhanced solid-state diffusion (sintering) by H2O(g). Under oxy-fuel-firing conditions, H2O(g) addition also resulted in decreased NOx emissions, but the pilot-scale tests showed poorer sulfur capture performance and calcium utilization as compared to air firing when H2O(g) was present, thereby reconfirming the TGA/TF results. It appears that most bench-scale work on sulfation to date has underestimated the true rate of reaction for sulfation in the presence of H2O(g). This conclusion explains at least in part why indirect sulfation is often faster than direct sulfation in pilot plant studies on oxy-fuel circulating fluidized bed combustion. Moreover, this work stresses the importance of including H2O(g) in bench-scale experiments that attempt to simulate real combustion environments.  相似文献   

11.
To improve the poor SO2 absorption rate of CeFeMgTi sorbent with high sulfur removal capacity and fast regeneration, a new sorbent, CeFeMgTi-sol was prepared by the modified co-precipitation method and tested in a packed bed reactor at RFCC conditions (sulfation of MgO to MgSO4 in the presence of low concentration of SO2 at 973 K, regeneration of MgSO4 to MgO and H2S in the presence of H2 at 803 K). The CeFeMgTi-sol sorbent showed excellent SO2 absorption and sulfur removal capacity (46.2 sulfur g/g absorbent×100). It was found that the SO2 absorption rates were related to the structure of the Mg and Ti and the textural properties such as surface area and pore volume. In the case of the fresh state of CeFeMgTi sorbent, CeO2, MgO and MgTiO3 structures were observed. But the new CeFeMgTisol sorbent before SO2 absorption, showed a separated MgO and TiO2 peak only. These differences in the sorption rates were discussed by the difference in the XRD pattern, surface area and pore volume.  相似文献   

12.
Analyses of samples of bed ash from a stationary fluidized bed boiler show the presence of calcium sulphide. In some samples, half of the total sulphur was present as sulphide. The samples containing CaS were obtained under unstaged conditions and with a high excess air ratio, 1.3 to 1.4. The samples were taken after a stop in the limestone addition, i.e. at high SO2 emissions of about 1000 mL/m3 (ppm). No CaS was found during limestone addition when the SO2 emission was 300–400 mL/m3. This indicates that formation of large amounts of CaS may be initiated as the SO2 concentration exceeds some critical level.  相似文献   

13.
《Fuel》2005,84(14-15):1933-1939
The microstructure and pore structure of limestone and shell as desulfurization sorbents during calcination and sulfation were investigated using the scan electron microscope and the porosimeter, respectively. The sulfation process and kinetics were analyzed by thermo-gravimetric method and modified grain reaction model. The results show that the doped alkali metal salts may improve microstructure and product diffusion of sorbent during high temperature sulfation, and enhance the initial reaction rate and the final CaO conversion of sorbents. The kinetic parameters of desulfurization with shells present compensation effect. There are linear relationships between logarithms of the pre-exponential factor ln k0, ln D0 and activation energies Ea, Ep, respectively. The activity of sorbent can not be exactly evaluated only by activation energies because of the compensation effect; and the k, Ds under certain experimental conditions can reflect the activity of sorbent. The particle pore diffusion and product layer diffusion control principally the rate of sulfation reaction. The pore size and structure and crystal lattice defects concentration caused by impurities or additives are the main factors to affect the sulfation capability of sorbent. There is an optimum content of alkali metal salts in the sorbent within a certain range of sulfation temperature, which helps sorbent to form a better microstructure and obtain higher reactive activity.  相似文献   

14.
To clarify the sulfur transformation behavior during oxy-fired circulating fluidized bed (CFB) combustion, experiments on SO2 emission characteristics were carried out in a 50 kWth CFB combustor. Results show that SO2 emission is quite dependent on the bed temperature in different atmospheres without limestone injection. With Ca/S=2.5, SO2 emission in 21%O2/79%CO2 atmosphere is smaller than that in air atmosphere, but SO2 emission decreases with the increase of O2 concentration. The calcium forms in the ash prove the combination of calcination/carbonation and direct sulfation mechanism of limestone under oxy-combustion conditions. And the desulfurization efficiency of limestone (as deducting the self-retention efficiency from the total sulfur removal efficiency) increases from 40% to 52% as the O2 concentration increases from 21% to 40%.  相似文献   

15.
A series of iron-manganese-based sorbents were prepared by co-precipitation and physical mixing method, and used for H2S removal from hot coal gas. The sulfidation tests were carried out in a fixed-bed reactor with space velocity of 2000 h−1(STP). The results show that the suitable addition of manganese oxide in iron-based sorbent can decrease H2S and COS concentration in exit before breakthrough due to its simultaneous reaction capability with H2S and COS. Fe3O4 and MnO are the initial active components in iron-manganese-based sorbent, and FeO and Fe are active components formed by reduction during sulfidation. The crystal phases of iron affect obviously their desulfurization capacity. The reducibility of sorbent changes with the content of MnO in sorbent. S7F3M and S3F7M have bigger sulfur capacities (32.68 and 32.30 gS/100 g total active component), while S5F5M has smaller sulfur capacity (21.92 gS/100 g total active component). S7F3M sorbent has stable sulfidation performance in three sulfidation-regeneration cycles and no apparent structure degradation. The sulfidation performance of iron-manganese-based sorbent is also related with its specific surface area and pore volume.  相似文献   

16.
Xiurong Ren  Fan Li  Kechang Xie 《Fuel》2010,89(4):883-887
Iron-based sorbent was preferable for desulfurization from coal-derived gas due to economic consideration and favorable dynamic property. The intrinsic behavior of Fe-based sorbent should be primarily understood in the sulfidation process for improving its performance. A series of tests were carried out with Fe2O3, Fe and other compounds containing-Fe (FO) made from the same precursor FeC2O4·2H2O in H2S-N2 mixture in this study. The formation of H2 was observed with Fe and FO as sorbents. While SO2 was detected with FO and Fe2O3 as sorbents, its concentration in outlet was gradually decreased. The crystal phase and surface chemical state of fresh and sulfided Fe2O3 with different reaction times were characterized by XRD and XPS measurements. The result suggested that the intrinsic H2S removal by Fe2O3 would produce multi-phase of sulfides. The possible mechanism of sulfidation reaction was discussed.  相似文献   

17.
The sulfur removing capacities of various Zn-Ti-based sorbents were investigated in the presence of H2O and HCl at high-(sulfidation, 650 °C; regeneration, 800 °C) and medium-(sulfidation, 480 °C; regeneration, 580 °C) temperature conditions. The H2O effect of all sorbents was not observed at high-temperature conditions. At mediumtemperature conditions, the reaction rate of ZT (Zn/Ti : 1.5) sorbent decreased with the level of H2O concentration, while modified (ZTC, ZTN) sorbents were not affected by the water vapor. HCl vapor resulted in the deactivation of ZT sorbent with a cycle number at high-temperature due to the production of ZnCl2 while the sulfur removing capacities of ZTC and ZTN sorbents were maintained during 4–5 cyclic tests. In the case of medium-temperature conditions, ZT sorbent was poisoned by HCl vapor while cobalt and nickel added to ZT sorbent played an important catalytic role to prevent from being poisoned by HCl due to providing heat, emitted when these additives quickly react with H2S even at medium-temperature conditions, to the sorbents  相似文献   

18.
Hot Gas Desulfurizarion for IGCC is a new method to efficiently remove H2S in fuel gas with regenerable sorbents at high temperature and high-pressure conditions. The Korea Institute of Energy Research did operation of sulfidation in a desulfurizer and regeneration in a regenerator simultaneously at high pressure and high temperature conditions. The H2S concentration at exit was maintained continuously below 50ppmv at 11,000 ppmv of inlet H2S concentration. The sorbent had little effect on the reducing power in the inlet gas in the range from 11% to 33% of H2. As inlet H2S concentration was increased, H2S concentration in the product gas was also increased linearly. The sorbent was maintained at low sulfur level by the continuous regeneration and the continuous solid circulation at the rate of 1.58× 10−3 kg/s with little mean particle size change.  相似文献   

19.
20.
Dolomite reacts with H2S to produce calcium sulphide and has been broadly investigated as a desulphurisation agent due to its low-cost and favourable properties.Because CaS reacts with water or water vapour in the environment to regenerate hydrogen sulphide and, therefore, disposal is problematic and the chemical cannot be uses as a landfill material. One of the methods used to make this material inert is oxidation to convert calcium sulphide into calcium sulphate or calcium oxide.In our study, tests were carried out using dolomite from Granada, Spain, that was previously calcined and sulphurised at high temperature with a gas similar to that produced in gasification facilities. To approximate real-scale results, a relatively large amount of substance was used for each sample (100–150 g) and the samples were used in a fixed-bed position.The influence of different conditions, such as grain size, composition of the oxidation gas, gas velocity, bed length and temperature, was them investigated. The final solid products were characterised by X-ray diffraction and chemical analysis and the CO2, SO2, H2S and COS concentrations in the gases produced during oxidation were analysed by gas chromatography.The results showed that the most influential factor was grain size and that the best oxidant was O2 mixed with nitrogen.The presence of water vapour increases the residual concentration of CaS in the end product, but increased the CaO contentThe higher the oxygen concentration and the higher the gas velocity, the lower the residual content of CaS. CO2 used alone oxidises CaS to produce SO2 and COS, but at very low rates. It also produces some CS2. Water vapour used alone can also oxidise the CaS to produce H2S and SO2 but also at very low velocity.At higher oxidation temperature, between 700°C and 850 °C, lesser residual CaS is obtained in the oxidised product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号