首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An indirect hemagglutination test for a seroepidemiological survey of Streptococcus pyogenes infection was standardized. This is an improved modification of the indirect hemagglutination test which utilizes an unstable reagent prepared with fresh blood cells. Two types of bacterial antigens represented by extracellular products and purified streptolysin O were assayed, but only the former antigen gave good results. Pretreatment of the bacterial antigen with 0.15 M NaOH and neutralization to pH 5.5, as well as postfixation of sensitized red cells with 0.1% glutaraldehyde at 56 degrees C for 30 min were found to be essential to give long stability to the reagent in liquid suspension, at least 9 months at 4 degrees C. A total of 564 serum samples with high, moderate and low anti-streptolysin O antibodies as determined by the neutralization assay were studied by the indirect hemagglutination test using the new reagent. The sensitivity, specificity, efficiency, positive predictive value and negative predictive value of the test in relation to the neutralization assay were 0.950, 0.975, 0.963, 0.973, and 0.955, respectively. The kappa agreement index between the two techniques was high (0.926) and ranked as "almost perfect". Antibody levels detected by both techniques also presented a high positive correlation (rs = 0.726). Five reagent batches successively produced proved to be reproducible. Thus, the improved indirect hemagglutination test seems to be useful for public health laboratories.  相似文献   

2.
3.
The mitogen-activated protein (MAP) kinase family includes extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38/RK/CSBP (p38) as structurally and functionally distinct enzyme classes. Here we describe two new dual specificity phosphatases of the CL100/MKP-1 family that are selective for inactivating ERK or JNK/SAPK and p38 MAP kinases when expressed in COS-7 cells. M3/6 is the first phosphatase of this family to display highly specific inactivation of JNK/SAPK and p38 MAP kinases. Although stress-induced activation of p54 SAPKbeta, p46 SAPKgamma (JNK1) or p38 MAP kinases is abolished upon co-transfection with increasing amounts of M3/6 plasmid, epidermal growth factor-stimulated ERK1 is remarkably insensitive even to the highest levels of M3/6 expression obtained. In contrast to M3/6, the dual specificity phosphatase MKP-3 is selective for inactivation of ERK family MAP kinases. Low level expression of MKP-3 blocks totally epidermal growth factor-stimulated ERK1, whereas stress-induced activation of p54 SAPKbeta and p38 MAP kinases is inhibited only partially under identical conditions. Selective regulation by M3/6 and MKP-3 was also observed upon chronic MAP kinase activation by constitutive p21(ras) GTPases. Hence, although M3/6 expression effectively blocked p54 SAPKbeta activation by p21(rac) (G12V), ERK1 activated by p21(ras) (G12V) was insensitive to this phosphatase. ERK1 activation by oncogenic p21(ras) was, however, blocked totally by co-expression of MKP-3. This is the first report demonstrating reciprocally selective inhibition of different MAP kinases by two distinct dual specificity phosphatases.  相似文献   

4.
5.
We have developed a method to study the primary sequence specificities of protein kinases by using an oriented degenerate peptide library. We report here the substrate specificities of eight protein Ser/Thr kinases. All of the kinases studied selected distinct optimal substrates. The identified substrate specificities of these kinases, together with known crystal structures of protein kinase A, CDK2, Erk2, twitchin, and casein kinase I, provide a structural basis for the substrate recognition of protein Ser/Thr kinases. In particular, the specific selection of amino acids at the +1 and -3 positions to the substrate serine/threonine can be rationalized on the basis of sequences of protein kinases. The identification of optimal peptide substrates of CDK5, casein kinases I and II, NIMA, calmodulin-dependent kinases, Erk1, and phosphorylase kinase makes it possible to predict the potential in vivo targets of these kinases.  相似文献   

6.
On repetitive stimulation, the strength of a reflex controlling leg position in Drosophila decreased, and this response decrement conformed to the parametric features of habituation. To study the presynaptic function of CaMKII in this nonassociative form of learning, we used a P[Gal4] insertion line to target the expression of mutant forms of CaMKII to the sensory neurons controlling the reflex. Targeted expression of a calcium-independent CaMKII construct (T287D) in the sensory neurons eliminated habituation. Targeted expression of a mutant CaMKII incapable of achieving calcium independence (T287A) reduced the initial reflex response, but a strong facilitation then occurred, and this eliminated most of the habituation. Finally, when a CaMKII inhibitory peptide (ala) was expressed in sensory neurons, the initial response was reduced, followed by facilitation. These results suggest that basal CaMKII levels in the presynaptic neurons set the response level and dynamics of the entire neural circuit.  相似文献   

7.
The AF-6/afadin protein, which contains a single PDZ domain, forms a peripheral component of cell membranes at specialized sites of cell-cell junctions. To identify potential receptor-binding targets of AF-6 we screened the PDZ domain of AF-6 against a range of COOH-terminal peptides selected from receptors having potential PDZ domain-binding termini. The PDZ domain of AF-6 interacts with a subset of members of the Eph subfamily of RTKs via its COOH terminus both in vitro and in vivo. Cotransfection of a green fluorescent protein-tagged AF-6 fusion protein with full-length Eph receptors into heterologous cells induces a clustering of the Eph receptors and AF-6 at sites of cell-cell contact. Immunohistochemical analysis in the adult rat brain reveals coclustering of AF-6 with Eph receptors at postsynaptic membrane sites of excitatory synapses in the hippocampus. Furthermore, AF-6 is a substrate for a subgroup of Eph receptors and phosphorylation of AF-6 is dependent on a functional kinase domain of the receptor. The physical interaction of endogenous AF-6 with Eph receptors is demonstrated by coimmunoprecipitation from whole rat brain lysates. AF-6 is a candidate for mediating the clustering of Eph receptors at postsynaptic specializations in the adult rat brain.  相似文献   

8.
Previously, we identified PG-1000 as part of a disulfide-linked complex of two large proteoglycans (PG-1000 and the beta component) and three smaller proteins purified from the extracellular matrix of elasmobranch electric organ (Iwata and Carlson, 1991, J. Biol. Chem. 266: 323-333). PG-1000 is a chondroitin sulfate/keratan sulfate proteoglycan with a molecular mass of about 1.2 x 16(6) daltons. When visualized in the electron microscope, PG-1000 has the typical "bottle-brush" appearance expected for a proteoglycan with an average total length of about 345 nm and about 20 chains of approximately 110 nm (Carlson and Wight, 1987, J. Cell Biol. 105: 3075-3086). Using immunocytochemical methods, we now demonstrate that PG-1000 is a component of the interstitial extracellular matrix of the electric organ. PG-1000 immunoreactivity is found throughout the interstitial matrix, but it is highly concentrated in that region of the matrix immediately adjacent to the basal lamina, the reticular lamina. The reticular and basal laminae together form the basement membrane. PG-1000 immunoreactivity is especially apparent on basal laminae that surround nerve fibers and nerve terminals. When the disulfide-linked PG-1000 complexes are purified and examined in the electron microscope following rotary shadowing, they appear as bottle-brush structures which are often attached at a central region and radiate like spokes of a wheel. These aggregates contain two to six proteoglycan monomers. We hypothesize that the PG-1000 complexes are disulfide-stabilized parts of an extended network of linked proteoglycans in the reticular lamina.  相似文献   

9.
Calcium-evoked dendritic exocytosis (CEDE), demonstrated in cultured hippocampal neurons, is a novel mechanism that could play a role in synaptic plasticity. A number of forms of neuronal plasticity are thought to be mediated by calcium/calmodulin-dependent protein kinase II (CaMKII). Here, we investigate the role of CaMKII in CEDE. We find that the developmental time course of CEDE parallels the expression of alphaCaMKII, a dominant subunit of CaMKII. An inhibitor of this enzyme, KN-62, blocks CEDE. Furthermore, 7 d in vitro neurons (which normally do not express alphaCaMKII nor show CEDE) can undergo CEDE when infected with a recombinant virus producing alphaCaMKII. Expression of a constitutively active CaMKII produces dendritic exocytosis in the absence of calcium stimulus, and this exocytosis is blocked by nocodazole, an inhibitor of microtubule polymerization that also blocks CEDE. These results indicate that CEDE is mediated by the activation of CaMKII, consistent with the view that CEDE plays a role in synaptic plasticity.  相似文献   

10.
We have shown in patients taking the antipsychotic drug haloperidol (HP) that two pyridinium metabolites (HPP+ and RHPP+) are present in blood and urine in nM concentrations. These metabolites are structurally analogous to MPP+, the neurotoxic metabolite of the well-known parkinsonian-producing protoxin, MPTP. In this study we measured the concentrations of HPP+ and RHPP+ in seven regions of the brain (putamen, substantia nigra, globus pallidus, caudate, hippocampus, cerebellum and occipital cortex) obtained at post-mortem from three patients who were taking HP before death. Blood, urine, and bile from one patient were analysed as well. HPP+ was present in all regions (except for substantia nigra in one patient and globus pallidus in another); the amount/g ranged from 1.6-8.3 pMol but there was no preferential sequestration of the metabolite in dopaminergic regions. Similarly, RHPP+ was present relatively uniformly in all regions; the amount/g ranged from 1.1-7.6 pMol. The concentrations of HPP+ and RHPP+ in one patient were 24 and 13 nM in blood, 660 and 230 nM in urine, and 13.0 and 1.4 microM in bile, respectively. The presence of these pyridinums in brain adds another important piece of information to the case that, at least for HP, metabolite-induced neurotoxicity could contribute to the extrapyramidal side-effects in patients receiving long-term therapy.  相似文献   

11.
The rat mu-opioid receptor (rMOR1), expressed in human embryonic kidney 293 (HEK293) cells, shows a desensitization to the inhibitory effect of the mu agonist DAMGO on adenylate cyclase activity within 4 h of DAMGO preincubation. To investigate the role of calcium/calmodulin-dependent protein kinase II (CaM kinase II) on mu-opioid receptor desensitization, we coexpressed rMOR1 and constitutively active CaM kinase II in HEK293 cells. This coexpression led to a faster time course of agonist-induced desensitization of the mu-opioid receptor. The increase of desensitization could not be observed with a mu-opioid receptor mutant (S261A/S266A) that lacks two putative CaM kinase II phosphorylation sites in the third intracellular loop. In addition, injection of CaM kinase II in Xenopus oocytes led only to desensitization of expressed rMOR1, but not of an S261A/S266A receptor mutant. These results suggest that phosphorylation of Ser261 and Ser266 by CaM kinase II is involved in the desensitization of the mu-opioid receptor.  相似文献   

12.
In situ hybridization histochemistry and immunocytochemistry were used to study localization and activity-dependent regulation of alpha, beta, gamma, and delta isoforms of type II calcium/calmodulin-dependent protein kinase (CaMKII) and their mRNAs in areas 17 and 18 of normal and monocularly deprived adult macaques. CaMKII-alpha is expressed overall at levels three to four times higher than that of CaMKII-beta and at least 15 times higher than that of CaMKII-gamma and -delta. All isoforms are expressed primarily in pyramidal cells of both areas, especially those of layers II-III, IVA (in area 17), and VI, but are also expressed in nonpyramidal, non-GABAergic cells of layer IV of both areas and in interstitial neurons of the white matter. CaMKII-alpha and -beta are colocalized, suggesting the formation of heteromers. There was no evidence of expression in neuroglial cells. Each isoform has a unique pattern of laminar and sublaminar distribution, but cortical layers or sublayers enriched for one isoform do not correlate with layers receiving inputs only from isoform-specific layers of the lateral geniculate nucleus. CaMKII-alpha and -beta mRNA and protein levels in layer IVC of area 17 are subject to activity-dependent regulation, with brief periods of monocular deprivation caused by intraocular injections of tetrodotoxin leading to a 30% increase in CaMKII-alpha mRNA and a comparable decrease in CaMKII-beta mRNA in deprived ocular dominance columns, especially of layer IVCbeta. Expression in other layers and expression of CaMKII-gamma and delta were unaffected. Changes occurring in layer IVC may influence the formation of heteromers and protect supragranular layers from CaMKII-dependent plasticity in the adult.  相似文献   

13.
Cellular levels of the rapidly degraded c-myc protein play an important role in determining the proliferation status of cells. Increased levels of c-myc are frequently associated with rapidly proliferating tumor cells. We show here that myc boxes I and II, found in the N termini of all members of the myc protein family, function to direct the degradation of the c-myc protein. Both myc boxes I and II contain sufficient information to independently direct the degradation of otherwise stably expressed proteins to which they are fused. At least part of the myc box-directed degradation occurs via the proteasome. The mechanism of myc box-directed degradation appears to be conserved between yeast and mammalian cells. Our results suggest that the myc boxes may play an important role in regulating the level and activity of the c-myc protein.  相似文献   

14.
15.
1. Here we report that in acutely isolated rat spinal dorsal horn neurons, the gamma-aminobutyric acid-A (GABAA) receptor can be regulated by calcium/calmodulin-dependent protein kinase II (CaM-KII). Intracellularly applied, the alpha-subunit of CaM-KII enhanced GABAA-receptor-activated current recorded with the use of the whole cell patch-clamp technique. This effect was associated with reduced desensitization of GABA responses. 2. GABA-induced currents are also potentiated by calyculin A, an inhibitor of protein phosphatases 1 and 2A. 3. Conventional intracellular recordings were made from hippocampal CA1 neurons in slices to determine the effect of intracellular application of CaM-KII on inhibitory synaptic potentials evoked by electrical stimulation of the stratum oriens/alveus. The inhibitory synaptic potential was enhanced by CaM-KII; this mechanism may contribute to long-term enhancement of inhibitory synaptic transmission and may also play a role in other forms of plasticity in the mammalian brain.  相似文献   

16.
The assumption that working on board ship is more strenuous than comparable work ashore was investigated in this study. Various physiological parameters (VO2, VCO2, VE and HR) have been measured to determine the energy expenditure of subjects walking slowly on a moving platform (ship motion simulator). Twelve subjects (eight men and four women) walked either freely on the floor or on a treadmill at a speed of 1 m x s(-1). Platform motion was either in a heave, pitch or roll mode. These three conditions were compared with a control condition in which the platform remained stationary. The results showed that during pitch and roll movements of the platform, the energy expenditure for the same walking task was about 30% higher than under the stationary control condition (3.6 J x kg[-1] x m[-1] vs 2.5 J x kg[-1] x m[-1], P < 0.05) for both walking on a treadmill and free walking. The heart rate data supported the higher energy expenditure results with an elevation of the heart rate (112 beats x min[-1] vs 103 beats x min[-1], P < 0.05). The heave condition did not differ significantly from the stationary control condition. Pitch and roll were not significantly different from each other. During all experimental conditions free walking resulted in a higher energy cost of walking than treadmill walking (3.5 J x kg[-1] x m[-1] vs 2.7 J x kg[-1] x m[-1], P < 0.05) at the same average speed. The results of this experiment were interpreted as indicating that the muscular effort, needed for maintaining balance when walking on a pitching or rolling platform, resulted in a significantly higher work load than similar walking on a stable or a heaving floor, independent of the mode of walking. These results explain in part the increased fatigue observed when a task is performed on a moving platform.  相似文献   

17.
The prevalence of sleep-disordered breathing (SDB) was evaluated in a male population sample of Lorraine (university staff), with a protocol including a self-completed standardized questionnaire, anthropometry (including neck, waist and hip circumferences) and non-invasive ear, nose, and throat examination. Among 357 subjects present in the institution at the moment of the survey, 334 (93.6%) accepted to participate, and 300 (84%) returned the questionnaires. The anthropometric results corresponded to the French normative values according to gender and age. We chose a value of 32 as limit of the body mass index (BMI) between weight excess and obesity; this limit was exceeded by 7.2% of the subjects. The mean age of the sample was 44.8 (SD 10.1) years; the waist-to-hip ratio was of 0.907 +/- 0.053. The ENT examination found a high prevalence of nasal septum deviations (52.6%), of soft palate (25.2%), and uvula (42%) abnormalities; 32.1% of the subjects had experienced amygdalectomy. The non-responses to the questionnaire were infrequent (less than 2%), except for the questions regarding a history of hypertension (2.6%), weight fluctuations the last 5 years (7.6%), and the number of years in school (12%). The questionnaire included, for each question, the optional answer "don't know"; this answer was chosen for the questions concerning the duration of snoring (37.1%), stopping breathing during sleep (12.7%) and the parental history of narcolepsy (18.7 and 20.7%) and sleep apnoea (33.7 and 36.4%). 5.7% of the subjects declared sleep apnoeas at least once per week: 16.1% had unrefreshing sleep; 10.6% admitted to excessive daytime sleepiness; 41.9% were habitual snorers. These results indicate a prevalence of SDB in our sample which is comparable to the figures obtained in other European studies. Further analysis of our data will indicate if, besides weight excess and its troncular distribution, cigarette smoking and respiratory symptoms, the "minor" ENT abnormalities play a role in the pathogenesis of SDB.  相似文献   

18.
19.
In the present investigation, in vitro phosphorylation of CNS proteins of the silkworm Bombyx mori during the postembryonic development have been studied. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of phosphorylated proteins revealed the presence of major phosphoproteins of 59/60 kDa. Based on molecular mass, calcium/calmodulin-dependent autophosphorylation, substrate specificity, KN-62 inhibition, apparent Km for ATP and syntide-2, these proteins were identified as calcium/calmodulin-dependent protein kinase II (CaM kinase II). Anti-rat CaM kinase II monoclonal antibody showed immunoreactivity with Bombyx CaM kinase II isoforms. This kinase showed a high degree of autophosphorylation in neural tissue. During postembryonic development of Bombyx, two distinct peaks of enzyme activity could be noticed, one at the late-larval and another at the late-pupal stage, which were associated with an increase in amount of the enzyme. These results suggested that the expression of CaM kinase II in the CNS of Bombyx was developmentally regulated.  相似文献   

20.
Drosophila melanogaster has been used as a biological model system for almost a century. In the last several decades, Drosophila has been used as a system to probe the molecular basis of behavior and discoveries in the fly have been at the forefront of the elucidation of important basic mechanisms. This review will outline the variety of approaches that make Drosophila an excellent model system with which to study the function of the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII) in synaptic plasticity. CaMKII has a well documented role in behavior and synaptic plasticity in both vertebrates and invertebrates. The behavioral and genetic richness of Drosophila allow for a multi-level approach to understanding the physiological roles of this enzyme's function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号