共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium iron phosphate is a most promising cathode material for Li-ion batteries(LIB).But the key barrier limiting its application is extremely low electronic conductivity. Meanwhile the low electron conductivity can be improved by preparing LiFePO4 with carbon modified. LiFePO4/C was synthesized by high temperature solid-state reaction using iron (Ⅱ) oxalate, ammonium di-hydrogen phosphate and lithium carbonate with a kind of organic compound (CR) that can be dissolved in the dispersant (ethanol) as carbon sources added to the synthetic precursor in this paper.The samples were characterized by X-ray diffraction, scanning electron microscope observations,charge/discharge test, cyclic voltammetry and carbon analysis. It was believed that the synthesized LiFePO4/C with perfect olivine structure by X-ray diffraction. The carbon brought about two advantages: (i) an optimized particle size of LiFePO4, and (ii) increasing the electronic conductivity and Li+ diffusivity. The cathode material could demonstrate a charge/discharge flat voltage of 3.4V (Vs Li+/Li). Especially the active material with 20, organic added according to the final product of LiFePO4 showed very good electrochemical performance reaching about initial 162.0 mAh/g specific capacity at 0. 1C rate and could also keep excellent discharge capacity even at 3C rate (510 mA/g) current and good cycle performance. The carbon content in the final production was only 5.29,(mass fraction). 相似文献
2.
HU Guo-rong GAO Xu-guang PENG Zhong-dong 《材料研究与应用》2005,(3):431-435
Lithium iron phosphate is a most promising cathode material for Li-ion batteries(LIB).But the key barrier limiting its application is extremely low electronic conductivity. Meanwhile the low electron conductivity can be improved by preparing LiFePO4 with carbon modified. LiFePO4/C was synthesized by high temperature solid-state reaction using iron (Ⅱ) oxalate, ammonium di-hydrogen phosphate and lithium carbonate with a kind of organic compound (CR) that can be dissolved in the dispersant (ethanol) as carbon sources added to the synthetic precursor in this paper.The samples were characterized by X-ray diffraction, scanning electron microscope observations,charge/discharge test, cyclic voltammetry and carbon analysis. It was believed that the synthesized LiFePO4/C with perfect olivine structure by X-ray diffraction. The carbon brought about two advantages: (i) an optimized particle size of LiFePO4, and (ii) increasing the electronic conductivity and Li+ diffusivity. The cathode material could demonstrate a charge/discharge flat voltage of 3.4V (Vs Li+/Li). Especially the active material with 20% organic added according to the final product of LiFePO4 showed very good electrochemical performance reaching about initial 162.0 mAh/g specific capacity at 0. 1C rate and could also keep excellent discharge capacity even at 3C rate (510 mA/g) current and good cycle performance. The carbon content in the final production was only 5.29%(mass fraction). 相似文献
3.
1IntroductionThe ever-growing demand for portable batteries with high energy density is exerting pressure for thedevelopment of advanced Li-ion batteries.The remaining challenges are cost,abuse tolerance,and low-temperature performance.One critical challenge is the thermal stability of the battery components.Pres-ently LiFePO4with a structure of olivine-type,first published by Goodenough[1],has become more con-cerned because of its high energy density,low raw materials cost,environmental fr… 相似文献
4.
以葡萄糖为碳源,采用碳热还原法制得一系列LiFePO4/C材料,其中葡萄糖的添加量分别为10,,15,,20,,25,和30,.通过XRD,SEM和恒流充放电等测试方法,研究了葡萄糖添加量对LiFePO4/C材料结构和电化学性能的影响.结果表明:当葡萄糖添加量为20,时,LiFePO4/C材料以0.2C充放电,放电比容量为140.6mA· h/g;1 C倍率50次循环后,容量保持率达到97,;以0.2C充电,在0.2C,1C,2C,5C和10 C不同倍率下放电,其中10 C倍率放电比容量为89.1mA· h/g,合成材料表现出良好的综合电化学性能.经XRD和SEM测试发现,制得的材料均为橄榄石型结构,不同碳含量对材料的颗粒尺寸有一定的影响. 相似文献
5.
采用二步固相反应在惰性气氛下合成了橄榄石型LiFe0.98M0.02PO4/C(M=Ni,Cr)复合正极材料.通过XRD,SEM及电化学测试等手段对材料的性能进行分析.研究结果表明:少量Ni2+,Cr3+的掺杂虽然未改变LiFePO4晶体结构,但改善了材料的颗粒形貌,降低了粒径(粒径约200nm),增强了LiFe0.98M0.02PO4/C材料的导电能力,比未掺杂的LiFePO4/C具有更好的电化学性能.在2.5~4.2V下充放电,LiFe0.98Cr0.02PO4/C材料0.2C的首次放电比容量为146.7mA·h·g-1,循环50次的容量保持率为98.1%,10C放电比容量达116.3mA·h·g-1. 相似文献
6.
7.
8.
9.
10.
采用高温固相合成法制备了碳包覆磷酸铁锂正极材料,使用不同有机碳源对LiFePO4进行碳包覆。通过热分析(TG-DSC)、X-射线衍射光谱法(XRD)、热场发射透射电子显微镜(HRTEM)、显微激光拉曼光谱等分析方法对其相组成、化学结构和碳结构等进行分析,并对LiFePO4/C为正极材料的电池进行了测试。结果表明:酚醛树脂、蔗糖、聚乙二醇和柠檬酸为有机碳源所制备的LiFePO4材料,都为纯相的LiFePO4;碳包覆LiFePO4材料,具有较完整的碳包覆层,且都有石墨结构的有序碳生成,能改善材料的电导率;酚醛树脂为有机碳源得到的LiFePO4/C材料性能最好,在0.1C倍率下充放电,首次放电比容量达到148.6 mAh/g,1C倍率下充放电的比容量达到125.1 mAh/g。 相似文献
11.
本文采用水-乙二醇作为溶剂,并使用溶剂热法制备出形态规则的磷酸铁锂(LFP)材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对不同溶剂合成的LFP前驱体的物相及形貌进行了表征。结果表明,不同溶剂合成的LFP均为纯相,且未改变LFP的橄榄石结构。当H2O: EG=1:1时,颗粒形貌规则且排列有序。电化学测试结果表明,当溶剂为H2O: EG=1:0、H2O: EG=1:1、H2O: EG=0:1时,LFP/C在1C条件下循环100次后容量分别为141.9、145.4、127.3 mAh·g-1。当溶剂比例为H2O: EG=1:1时,容量保持率达到99%。即使在2C的放电速率下,其初始放电比容量为134.4 mAh·g-1,明显优于其他LFP/C的电化学性能。此外,研究了混合溶剂中合成LFP的材料在不同温度下的形貌形成规律及机理过程。 相似文献
12.
13.
采用简单的水热法在泡沫镍基底上直接生长NiCo2O4电极材料,并用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学测试研究了材料的结构和电化学性能。结果表明,NiCo2O4材料粒径尺寸均一,未发生团聚,并且材料表现出优异的电化学性能。NiCo2O4电极材料在1 A.g-1电流密度下放电比容量高达1227 F.g-1,当充放电电流密度增大到10 A.g-1,比电容为836.4 F.g-1,容量保持率为68%。并且电极材料在6 A.g-1的大电流密度下充放电循环1000次后,仍有较为良好的容量保持率,NiCo2O4作为超级电容器电极材料展现出良好的容量属性和倍率性能。 相似文献
14.
以H3PO4,FeSO4·7H2O和LiOH·H2O为原料,采用水热法制备锂离子电池正极材料LiFePO4,并以葡萄糖为碳源对其进行碳包覆.考查了pH值、水热反应温度和反应时间等工艺条件对合成产物的结构、微观形貌和电化学性能的影响.结果表明,pH值对水热反应合成LiFePO4有很大的影响,当前驱体pH值为7左右时能得到较纯的LiFePO4.260℃水热反应4 h所合成的LiFePO4碳包覆后的电性能最好,0.1C倍率下首次充放电比容量分别为152和146 mAh/g. 相似文献
15.
电化学脱嵌法盐湖提锂技术因其选择性高、吸附量大、绿色无污染等优点,越来越受到人们的关注,但盐湖卤水矿化度高、黏度大,导致实际提锂速率较低。基于此,以NH4HCO3为造孔剂,制备了具有良好渗透性和传质性能的多孔LiFePO4电极,以改善提锂过程动力学性能。结果表明:造孔改性后电极表面具有微裂纹-微孔的复合结构,可显著强化溶液的传质过程,降低电化学极化。以多孔电极进行电化学脱嵌法提锂,其嵌锂容量由传统电极的25.6 mg(Li)/g(LiFePO4)增加至多孔电极的35.2 mg(Li)/g(LiFePO4),且提锂过程的平均电流密度由8.7 A/m2提高至17.9 A/m2,提锂效率显著提高。此外采用多孔电极循环提锂30次后容量保持率高达98%,表现出良好的循环性能。 相似文献
16.
17.
采用高温固相法合成Li_4Ti_5O_(12)及Li_4Ti_(4.95)Zr_(0.05)O_(12)材料,采用扫描电镜(SEM)、X射线粉末衍射(XRD)、充放电测试和循环伏安(CV)研究材料的结构和电化学性能。结果表明,两种材料均具有较小的平均粒径和窄的粒度分布,Zr4+进入晶格结构内部,具有纯相的尖晶石结构。0.1C倍率时,Li_4Ti_(4.95)Zr_(0.05)O_(12)首次放电比容量高达248 m A·h/g,略低于Li_4Ti_5O_(12)。1.0C倍率放电比容量为145 m A·h/g,5.0C倍率140次循环后,放电比容量仍达到121 m A·h/g,明显高于纯相Li_4Ti_5O_(12)材料,具有较好倍率性能。 相似文献
18.
为缓解纳米硅粉的体积膨胀,并有效提高其电导率,采用直流电弧等离子蒸发法和液相分散制备高纯、高分散性纳米硅粉,并以蔗糖为碳源,再与膨胀石墨复合,制备出一种新型纳米硅碳复合负极材料。研究结果表明:纯纳米硅在0.1C的倍率下首次放电比容量达到2 712mAh/g,但首次库伦效率仅为33.81%;所制备的纳米硅碳复合材料在0.1C的倍率下,首次充、放电容量分别为615mAh/g和917mAh/g,50个循环以后可逆比容量保持在495mAh/g,循环性能和倍率性能大大改善。 相似文献
19.
以磷酸铁锂为正极活性材料, 采用直接混合法, 研究了添加质量分数为0.5%、1%和1.5%的石墨烯对锂离子电容器电化学性能的影响。利用扫描电子显微镜、X射线衍射分别对材料形貌、结构等进行了分析, 并比较了掺杂不同石墨烯的电极材料恒流充放电性能和循环性能。结果表明, 石墨烯是一种三维自支撑片状结构, 粉末材料是独立形成的, 并且不易团聚, 纳米磷酸铁锂颗粒分散均匀, 颗粒呈类球型状; 掺杂不同量的石墨烯对磷酸铁锂本身结构几乎没有影响; 掺杂1.5%石墨烯电极性能最好, 高倍率5C时, 放电比容量96 mAh/g, 容量保持率77%, 当恢复到0.1C时, 放电比容量是初始容量的95%, 循环500圈后容量保持率达92%, 阻抗最小,为0.3661 Ω。 相似文献