首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
Over the past years, ultrathin films consisting of electron donating and accepting molecules have attracted increasing attention due to their potential usage in optoelectronic devices. Key parameters for understanding and tuning their performance are intermolecular and molecule–substrate interactions. Here, the formation of a monolayer thick blend of triphenylene‐based organic donor and acceptor molecules from 2,3,6,7,10,11‐hexamethoxytriphenylene (HAT) and 1,4,5,8,9,12‐hexaazatriphenylenehexacarbonitrile (HATCN), respectively, on a silver (111) surface is reported. Scanning tunneling microscopy and spectroscopy, valence and core level photoelectron spectroscopy, as well as low‐energy electron diffraction measurements are used, complemented by density functional theory calculations, to investigate both the electronic and structural properties of the homomolecular as well as the intermixed layers. The donor molecules are weakly interacting with the Ag(111) surface, while the acceptor molecules show a strong interaction with the substrate leading to charge transfer and substantial buckling of the top silver layer and of the adsorbates. Upon mixing acceptor and donor molecules, strong hybridization occurs between the two different molecules leading to the emergence of a common unoccupied molecular orbital located at both the donor and acceptor molecules. The donor acceptor blend studied here is, therefore, a compelling candidate for organic electronics based on self‐assembled charge‐transfer complexes.  相似文献   

2.
The adsorption of 2,6-naphthalenedicarboxylic acid (NDCA) molecules on the Ag(110), Cu(110), and Ag(111) surfaces at room temperature has been studied by means of scanning tunnelling microscopy (STM). Further supporting results were obtained using X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS). On the Ag(110) support, which had an average terrace width of only 15 nm, the NDCA molecules form extended one-dimensional (1-D) assemblies, which are oriented perpendicular to the step edges and have lengths of several hundred nanometres. This shows that the assemblies have a large tolerance to monatomic surface steps on the Ag(110) surface. The observed behaviour is explained in terms of strong intermolecular hydrogen bonding and a strong surface-mediated directionality, assisted by a sufficient degree of molecular backbone flexibility. In contrast, the same kind of step-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent bonds to the surface, a situation which is also achieved on Ag(110) by annealing to 200 °C. These results show that the formation of particular self-assembled molecular nanostructures depends significantly on a subtle balance between the adsorbate-adsorbate and adsorbate-substrate interactions and that kinetic factors play an important role.   相似文献   

3.
Nanoscale structure-electric potential relations in films of the organic molecular semiconductors C(60) and titanyl phthalocyanine (TiOPc) on Ag(111) have been measured under UHV conditions. Noncontact force methods were utilized to image domain structures and boundaries with molecular resolution, while simultaneously quantifying the local surface electric potential. Sensitivity and spatial resolution for the local potential measurement were first established on Ag(111) through direct observation of the electrical dipole and potential step, φ(step) = 10 ± 3 mV, of monatomic crystallographic steps. A local surface potential increase of 27 ± 11 mV occurs upon crossing the boundary between the neat Ag(111) surface and C(60) islands. Potential steps in binary C(60)-TiOPc films, nanophase-separated into crystalline C(60) and TiOPc domains, were then mapped quantitatively. The 207 ± 66 mV potential step across the C(60)-to-TiOPc domain boundary exhibits a 3.6 nm width that reflects the spatial resolution for electric potential across a material interface. The absence of potential asymmetry across this lateral interface sets the upper bound for the C(60)-TiOPc interface dipole moment as 0.012 e nm.  相似文献   

4.
The formation, structural and electronic properties of silicene oxides(SOs) that result from the oxidation of silicene on Ag(111) surface have been investigated in the framework of density functional theory(DFT).It is found that the honeycomb lattice of silicene on the Ag(111) surface changes after the oxidation. SOs are strongly hybridized with the Ag(111) surface so that they possess metallic band structures. Charge accumulation between SOs and the Ag(111) surface indicates strong chemical bonding, which dramatically affects the electronic properties of SOs. When SOs are peeled off the Ag(111) surface, however, they may become semiconductors.  相似文献   

5.
The organization and thermal lability of chloro(5,10,15,20-tetraphenyl porphyrinato)manganese(III) (Cl-MnTPP) molecules on the Ag(111) surface have been investigated under ultra-high vacuum conditions, using scanning tunnelling microscopy, low energy electron diffraction and x-ray photoelectron spectroscopy. The findings reveal the epitaxial nature of the molecule-substrate interface, and moreover, offer a valuable insight into the latent coordination properties of surface-confined metalloporphyrins. The Cl-MnTPP molecules are found to self-assemble on the Ag(111) surface at room temperature, forming an ordered molecular overlayer described by a square unit cell. In accordance with the threefold symmetry of the Ag(111) surface, three rotationally equivalent domains of the molecular overlayer are observed. The primitive lattice vectors of the Cl-MnTPP overlayer show an azimuthal rotation of ±15° relative to those of the Ag(111) surface, while the principal molecular axes of the individual molecules are found to be aligned with the substrate (0(-)11) and ((-)211) crystallographic directions. The axial chloride (Cl) ligand is found to be orientated away from the Ag(111) surface, whereby the average plane of the porphyrin macrocycle lies parallel to that of the substrate. When adsorbed on the Ag(111) surface, the Cl-MnTPP molecules display a latent thermal lability resulting in the dissociation of the axial Cl ligand at ~423 K. The thermally induced dissociation of the Cl ligand leaves the porphyrin complex otherwise intact, giving rise to the coordinatively unsaturated Mn(III) derivative. Consistent with the surface conformation of the Cl-MnTPP precursor, the resulting (5,10,15,20-tetraphenyl porphyrinato)manganese(III) (MnTPP) molecules display the same lattice structure and registry with the Ag(111) surface.  相似文献   

6.
Braun KF  Hla SW 《Nano letters》2005,5(1):73-76
We use scanning tunneling microscope (STM) manipulation and density functional theory calculation to investigate the structural properties of individual sexiphenyl molecules physisorbed on a Ag(111) surface at 6 K. The molecule-surface atomic registry is precisely determined by using atomic markers and a sexiphenyl functionalized tip. The calculations confirm the alternating twist of the sexiphenyl pi-rings on Ag(111). The pi-ring torsional angle, 11.4 degrees, is directly determined from the geometry of STM manipulation. This innovative experiment opens up a novel application of STM manipulation to probe the properties of "physisorbed" species on surfaces at the atomic level.  相似文献   

7.
In this work, we report a new strategy to prepare silver (Ag) nanoparticles (NPs) from bulk Ag substrates. First, positively charged Ag ions were prepared by electrochemical methods in 0.1 N HNO3 aqueous solutions. Then the solutions were heated from room temperature to 100 °C at a heating rate of 6 °C/min to prepare Ag nanoparticles. The average particle size of the prepared Ag NPs with predominant (111) face is ca. 10 nm. Experimental results indicate that the prepared Ag (111) nanoparticles in solutions are surface-enhanced Raman scattering (SERS)-active, which are examined by probe molecules of Rhodamine 6G.  相似文献   

8.
In this paper, the energy bands, interlayer interactions and thermoelectric effects of twisted bilayer borophene (TBB) synthesized on Ag (111) are studied theoretically. The results manifest the advantages of twistronics, where the high electrical conductivity and the large Seebeck coefficient are regulated to the same range, which lead to the significantly increase of figure of merit ZT than that of bilayer borophene (BB) without twist, where the BB without twist is successfully synthesized on Ag (111) film is recently experimental report [Nat. Mater. 2022, 21, 35]. For the TBB synthesized of on Ag (111) film, theoretical analysis demonstrates that TBB and Ag are relatively strongly coupled, and TBB becomes a metallic 2D material, where the top and bottom borophene layers are semiconducting and metallic, respectively. TBB exhibits excellent thermoelectric efficiency due to the charge transfer bonding between the layers, less electron localization, and the regulation of Seebeck coefficient, electrical conductivity, and ZT at the same region of chemical potential and the same temperature by twistronics. The structure-property relationship offers the possibility of applying TBB in thermoelectric devices.  相似文献   

9.
Annealing of 100 nm-thick Cu, Cu(Mo) and Cu(Ag) films was carried out to investigate the effect of dopant atoms on the films. Molybdenum (Mo) and silver (Ag) were selected as immiscible dopants for out-diffusion studies. A thermally grown SiO2 layer and a sputtered Ti layer were used as substrates. The dopant and substrate effects were characterized in terms of surface morphology, resistivity, preferred orientation, and diffusional characteristics. The lowest observed resistivity was 2.32 · cm in the Cu(Ag) film, which was lower than that in a pure Cu film of the same thickness. Ag addition enhanced the surface morphology and thermal stability of the Cu(Ag) films. The highest thermal stability was obtained in the case of a Cu(Mo)/Ti film which maintained film integrity to 800°C. A Ti substrate enhanced Cu(111) texture growth. A highly oriented Cu(111)-texture was obtained in the Cu(Mo)/Ti films. Cu diffusion through the Ti layer was limited in the (111)-textured Cu(Mo)/Ti films, which showed good potential as a diffusion barrier.  相似文献   

10.
The control of organic molecules, supramolecular complexes and donor-acceptor systems at interfaces is a key issue in the development of novel hybrid architectures for regulation of charge-carrier transport pathways in nanoelectronics or organic photovoltaics. However, at present little is known regarding the intricate features of stacked molecular nanostructures stabilized by noncovalent interactions. Here we explore at the single molecule level the geometry and electronic properties of model donor-acceptor dyads stabilized by van der Waals interactions on a single crystal Ag(111) support. Our combined scanning tunneling microscopy/spectroscopy (STM/STS) and first-principles computational modeling study reveals site-selective positioning of C(60) molecules on Ce(TPP)(2) porphyrin double-decker arrays with the fullerene centered on the π-system of the top bowl-shaped tetrapyrrole macrocycle. Three specific orientations of the C(60) cage in the van der Waals complex are identified that can be reversibly switched by STM manipulation protocols. Each configuration presents a distinct conductivity, which accounts for a tristable molecular switch and the tunability of the intradyad coupling. In addition, STS data evidence electronic decoupling of the hovering C(60) units from the metal substrate, a prerequisite for photophysical applications.  相似文献   

11.
We have investigated the initial stages of growth and the electronic structure of C(60) molecules on graphene grown epitaxially on SiC(0001) at the single-molecule level using cryogenic ultrahigh vacuum scanning tunneling microscopy and spectroscopy. We observe that the first layer of C(60) molecules self-assembles into a well-ordered, close-packed arrangement on graphene upon molecular deposition at room temperature while exhibiting a subtle C(60) superlattice. We measure a highest occupied molecular orbital-lowest unoccupied molecular orbital gap of ~3.5 eV for the C(60) molecules on graphene in submonolayer regime, indicating a significantly smaller amount of charge transfer from the graphene to C(60) and substrate-induced screening as compared to C(60) adsorbed on metallic substrates. Our results have important implications for the use of graphene for future device applications that require electronic decoupling between functional molecular adsorbates and substrates.  相似文献   

12.
利用光电子能谱研究了有机半导体并四苯(tetracene)与金属Ag(110)界面的相互作用特性和电子性质,UPS测量给出tetracene的价带结构,其价带顶(HOS)位于费密能级以下约2.6 eV处.XPS测量显示Ag 3d和C 1s谱峰几乎没有位移,表明tetranece与衬底Ag之间相互作用弱.随着tetracene在Ag(110)表面的沉积,功函数在初始阶段快速减小,继续沉积tetracene其功函数回升并达到饱和.tetracene沉积初始阶段的功函数减小归结于有机分子在表面的极化,而随后增加的起因则是有机分子间的退极化.  相似文献   

13.
Structural, microstructural, and magnetoresistive properties of metallic Fe(x)Ag(y)Ni(z) granular thin films were studied. These films with several compositions were prepared by dc magnetron sputtering. X-ray diffraction (XRD) measurements carried out on the samples show only Ag(111) peaks. The d-spacings determined from the Ag(111) peaks are smaller than the standard value for bulk Ag indicating a partial intermixing of Fe and Ni atoms in Ag. The diffraction pattern obtained using Transmission electron microscope (TEM) shows a number of Ag rings. Both XRD and TEM studies did not reveal any diffraction peaks due to Fe or Ni. The average particle size determined from the TEM micrograph is 5.5 nm whereas that determined from the XRD patterns is always higher. The magnetoresistance ratio for all the samples lies in the range 3 to 4.3%, except for a sample.  相似文献   

14.
The migration behavior of C60 on Ni(111) has been inferred from its growth morphology at various substrate temperatures, as observed with scanning tunneling microscopy. The number density of islands increased and their average sizes decreased anomalously in the temperature range of approximately 573 K to approximately 973 K. This trend contradicts the prediction in conventional nucleation theory. At low and high temperatures, C60 commence nucleation on both sides of surface steps in a "bi-directional step flow" mode. However, anisotropy occurs within an intermediate temperature range, in which C60 nucleate predominantly at upper step edges. Surprisingly, in-situ growth measurements at this intermediate temperature range revealed that C60 actually start nucleating from lower step edges, with concomitant formation of Ni terraces underneath. These anomalous thermal dependence of diffusivity and the peculiar growth morphology of C60 on Ni(111) are attributed to C60-induced reconstruction of Ni(111) at higher temperature.  相似文献   

15.
Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule-substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C(60) with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C(60) molecules and the clean Pt(111) surface results in the formation of an ordered sqrt[13] x sqrt[13]R13.9 degrees reconstruction based on the creation of a surface vacancy lattice. The C(60) molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.  相似文献   

16.
17.
The on‐surface Ullmann‐type chemical reaction synthesizes polymers by linking carbons of adjacent molecules on solid surfaces. Although an organometallic compound is recently identified as the reaction intermediate, little is known about the detailed structure of the bonded organometallic species and its influence on the molecule and the reaction. Herein atomic force microscopy at low temperature is used to study the reaction with 3,9‐diiododinaphtho[2,3‐b:2′,3′‐d]thiophene (I‐DNT‐VW), which is polymerized on Ag(111) in vacuum. Thermally sublimated I‐DNT‐VW picks up a Ag surface atom, forming a C? Ag bond at one end after removing an iodine. The C? Ag bond is usually short‐lived, and a C? Ag? C organometallic bond immediately forms with an adjacent molecule. The existence of the bonded Ag atoms strongly affects the bending angle and adsorption height of the molecular unit. Density functional theory calculations reveal the bending mechanism, which reveals that charge from the terminus of the molecule is transferred via the Ag atom into the organometallic bond and strengths the local adsorption to the substrate. Such deformations vanish when the Ag atoms are removed by annealing and C? C bonds are established.  相似文献   

18.
A review of ferromagnetism in C60 polymeric materials synthesized by high pressure high temperature (HPHT) treatment is presented. Analysis of published data proves that the reported ferromagnetism cannot be assigned to polymeric structure in either perfect or defect states. Most recent experimental studies have not confirmed previously reported levels of magnetization in polymeric samples while it appears that ferromagnetism of "magnetic carbon" is preserved above the depolymerization point of any C60 polymer. Identical ferromagnetic properties in some samples of fullerene polymer and graphite like hard carbon phase also show that the effect is most likely not connected to fullerenes at all. Most of the data published previously as an evidence of ferromagnetism in C60 polymers synthesized at HPHT conditions can be explained by contamination with magnetic impurities. Formation of iron carbide (Fe3C) due to reaction of metallic iron with fullerene molecules allows to explain observed Curie temperature of approximately 500 K and levels of magnetization reported for "magnetic carbon".  相似文献   

19.
A model alkane molecule, triacontane, is used to assess the effects of condensed gold and silver nanoparticles on the molecular ion yields upon atomic (Ga(+) and In(+)) and polyatomic (C60(+) and Bi3(+)) ion bombardment in metal-assisted secondary ion mass spectrometry (MetA-SIMS). Molecular films spin-coated on silicon were metallized using a sputter-coater system, in order to deposit controlled quantities of gold and silver on the surface (from 0 to 15 nm equivalent thickness). The effects of gold and silver islets condensed on triacontane are also compared to the situation of thin triacontane overlayers on metallic substrates (gold and silver). The results focus primarily on the measured yields of quasi-molecular ions, such as (M - H)(+) and (2M - 2H)(+), and metal-cationized molecules, such as (M + Au)(+) and (M + Ag)(+), as a function of the quantity of metal on the surface. They confirm the absence of a simple rule to explain the secondary ion yield improvement in MetA-SIMS. The behavior is strongly dependent on the specific projectile/metal couple used for the experiment. Under atomic bombardment (Ga(+), In(+)), the characteristic ion yields an increase with the gold dose up to approximately 6 nm equivalent thickness. The yield enhancement factor between gold-metallized and pristine samples can be as large as approximately 70 (for (M - H)(+) under Ga(+) bombardment; 10 nm of Au). In contrast, with cluster projectiles such as Bi3(+) and C60(+), the presence of gold and silver leads to a dramatic molecular ion yield decrease. Cluster projectiles prove to be beneficial for triacontane overlayers spin-coated on silicon or metal substrates (Au, Ag) but not in the situation of MetA-SIMS. The fundamental difference of behavior between atomic and cluster primary ions is tentatively explained by arguments involving the different energy deposition mechanisms of these projectiles. Our results also show that Au and Ag nanoparticles do not induce the same behavior in MetA-SIMS of triacontane. The microstructures of the metallized layers are also different. While metallic substrates provide higher yields than metal islet overlayers in the case of silver, whatever the projectile used, the situation is reversed with gold.  相似文献   

20.
A polymer composite of Ag-metal reinforced polyvinyl alcohol (PVA) is synthesized in shape of thin laminates of 200–300 μm thickness. The process involves a chemical Ag+ dispersion in PVA and in-situ reduction-reaction with active PVA molecules under hot conditions (with stirring) in water at 60–70°C temperature. The product results in a metal Ag-polymer complex dispersed in the solution. After evaporating part of water, a derived viscous solution is casted (in hot conditions) in shape of a thin laminate in a glass mould. In addition to chemical reducer, active OH-groups (free from H-bonding) in PVA molecules of refreshed surfaces act as head groups to adsorb Ag+ and drive a directional growth. Short fibrils of Ag-metal thus occur in reaction over the PVA molecules. Casting thin laminates from a liquid sample Ag-PVA allows the fibrils (also the polymer molecules) to align along the surface. Selected Ag-contents up to 5.0 wt.% in Ag-PVA laminates are studied in terms of scanning electron micrograph, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. Average size, morphology and aspect ratio (ϕ) vary in Ag-metal depending on the Ag-content. As long Ag-metal fibrils as 2–5 μm, ϕ=35, occur in a sample of 2.0 wt.% Ag. The Ag-metal reflects in two characteristic 3d5/2 and 3d/3/2 XPS bands of 368.3 and 374.1 eV respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号