首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The myogenic progenitors of epaxial (paraspinal and intercostal) and hypaxial (limb and abdominal wall) musculature are believed to originate in dorsal-medial and ventral-lateral domains, respectively, of the developing somite. To investigate the hypothesis that Myf-5 and MyoD have different roles in the development of epaxial and hypaxial musculature, we further characterized myogenesis in Myf-5- and MyoD-deficient embryos by several approaches. We examined expression of a MyoD-lacZ transgene in Myf-5 and MyoD mutant embryos to characterize the temporal-spatial patterns of myogenesis in mutant embryos. In addition, we performed immunohistochemistry on sectioned Myf-5 and MyoD mutant embryos with antibodies reactive with desmin, nestin, myosin heavy chain, sarcomeric actin, Myf-5, MyoD and myogenin. While MyoD(-/-) embryos displayed normal development of paraspinal and intercostal muscles in the body proper, muscle development in limb buds and brachial arches was delayed by about 2.5 days. By contrast, Myf-5(-/-) embryos displayed normal muscle development in limb buds and brachial arches, and markedly delayed development of paraspinal and intercostal muscles. Although MyoD mutant embryos exhibited delayed development of limb musculature, normal migration of Pax-3-expressing cells into the limb buds and normal subsequent induction of Myf-5 in myogenic precursors was observed. These results suggest that Myf-5 expression in the limb is insufficient for the normal progression of myogenic development. Taken together, these observations strongly support the hypothesis that Myf-5 and MyoD play unique roles in the development of epaxial and hypaxial muscle, respectively.  相似文献   

3.
4.
5.
6.
Modulation of protein kinase C (PKC) and cAMP-dependent protein kinase (PKA) activities by delta-opioid receptor specific agonist [D-Pen2, D-Pen5]-enkephalin (DPDPE) was investigated in neuroblastoma x glioma hybrid NG 108-15 cells. DPDPE activated PKC in a dose-dependent manner, with the maximal response at 5 min. The DPDPE-stimulated PKC activation could be blocked by naltrindole. The activation of PKC by DPDPE was dependent on Ca2+ and was inhibited by chelerythrine chloride (10 microM), but not by H89 (1 microM). Pretreatment of NG 108-15 cells with pertussis toxin (100 ng/ml for 24 h) completely abolished DPDPE-stimulated PKC activation. In contrast to the result from the acute treatment with DPDPE, which had no significant effect on PKA activity, chronic treatment of DPDPE (1 microM for 24 h) increased PKA activity, but reduced the basal activity of PKC. These results demonstrated that DPDPE differentially modulated PKC and PKA activities via a receptor-mediated, PTX sensitive pathway.  相似文献   

7.
BACKGROUND: Traditional protein kinase assays include the use of [32P] labeled ATP as phosphate donor and a substrate protein or peptide as phosphoreceptor. Since this approach has a number of drawbacks in addition to generating ionizing radiation, several non-isotopic methods have been developed. Although shown to reflect the activity of purified enzymes, none have been demonstrated to detect physiological changes in endogenous enzyme activity in cell homogenates. METHODS: Studies were performed to examine the kinetics, reproducibility, and optimal assay conditions of a novel non-radioisotopic kinase assay that detects PKA activity by phosphorylation of the peptide substrate Kemptide covalently bound to a fluorescent molecule (f-Kemptide). Basal and agonist-induced PKA activity in epithelial cell homogenates was measured. RESULTS: The kinetics of f-Kemptide were similar to the standard radioisotopic method with intraassay and interassay variations of 5.6 +/- 0.8% and 14.3 +/- 2.6%, respectively. Neither fluorescence quenching nor enhancing effects were found with consistent amounts of homogenate protein. Specific PKA activity was determined as the IP20-inhibitable fraction to account for nonspecific phosphorylation, perhaps due to S6 kinase or a similar enzyme. The basal activity of 38% of total PKA in A6 cells increased by 84% after exposure to vasopressin and by 58% after short exposure to forskolin. In T84 cells exposed to VIP there was a 360% increase over basal activity. CONCLUSIONS: These results show that f-Kemptide exhibits acceptable kinetics, and that the assay system can quantitatively and reproducibly measure basal and stimulated PKA activity in cell homogenates.  相似文献   

8.
9.
The catalytic subunit of the cAMP-dependent protein kinase from Dictyostelium discoideum, PkaC, displays the same properties as its mammalian counterpart, except for being about twice as large in size. Sequence comparisons indicated the presence of a conserved alpha-helix (A-helix) within the N-terminal region of PkaC which could potentially establish close contacts with the catalytic core [Véron, M., et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 10618-10622]. We show in this report that a synthetic peptide with the A-helix sequence inhibits PKA activity, whereas unrelated peptides display no inhibitory activity. The inhibition seems competitive with respect to the kemptide substrate rather than due to binding to a secondary site. We further show by amino acid replacements that the last lysine of the A-helix sequence is involved in this specific inhibition. A model is proposed for the possible role of the A-helix.  相似文献   

10.
11.
12.
13.
Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses.  相似文献   

14.
15.
The conserved glycines in the glycine-rich loop (Leu-Gly50-Thr-Gly52-Ser-Phe-Gly55-Arg-Val) of the catalytic (C) subunit of cAMP-dependent protein kinase were each mutated to Ser (G50S, G52S, and G55S). The effects of these mutations were assessed here using both steady-state and pre-steady-state kinetic methods. While G50S and G52S reduced the apparent affinity for ATP by approximately 10-fold, substitution at Gly55 had no effect on nucleotide binding. In contrast to ATP, only mutation at position 50 interfered with ADP binding. These three mutations lowered the rate of phosphoryl transfer by 7-300-fold. The combined data indicate that G50 and G52 are the most critical residues in the loop for catalysis, with replacement at position 52 being the most extreme owing to a larger decrease in the rate of phosphoryl transfer (29 vs 1.6 s-1 in contrast to 500 s-1 for wild-type C). Surprisingly, all three mutations lowered the affinity for Kemptide by approximately 10-fold, although none of the loop glycines makes direct contact with the substrate. The inability to correlate the rate constant for net product release with the dissociation constant for ADP implies that other steps may limit the decomposition of the ternary product complex. The observations that G52S (a) selectively affects ATP binding and (b) significantly lowers the rate of phosphoryl transfer without making direct contact with either the nucleotide or the peptide imply that this residue serves a structural role in the loop, most likely by positioning the backbone amide of Ser53 for contacting the gamma-phosphate of ATP. Energy-minimized models of the mutant proteins are consistent with the observed kinetic consequences of each mutation. The models predict that only mutation of Gly52 will interfere with the observed hydrogen bonding between the backbone and ATP.  相似文献   

16.
Coexpression of the yeast N-myristyltransferase with the murine catalytic subunit of cAMP-dependent protein kinase in prokaryotic cells results in the N-myristylation of the recombinant catalytic subunit. The acylated recombinant catalytic subunit was purified following in vitro holoenzyme formation with a mutant form of the regulatory subunit and compared to the non-myristylated recombinant enzyme and to the mammalian porcine enzyme. All three enzymes are very similar in terms of their kinetic properties and their capacity to reassociate in vitro with the regulatory subunit to form holoenzyme. In contrast, the myristylated recombinant catalytic subunit is significantly more stable to thermal denaturation than the non-myristylated enzyme. Its thermal stability is now comparable to the mammalian enzyme. All three catalytic subunits are significantly more stable to thermal denaturation when they are part of the holoenzyme complex. Each shows an increase in T1/2 of 10 degrees C. This study demonstrates that one function for the myristic acid at the NH2 terminus of the catalytic subunit is to provide structural stability.  相似文献   

17.
Novel members of the amiloride-sensitive Na+ channel/ degenerin family of ion channels were discovered recently. With the cloning of four mammalian H(+)-gated cation channel subunits, the first members of a novel class of ligand-gated cation channels were identified. H(+)-gated cation channel subunits are expressed in the central and peripheral nervous system. In sensory neurones, they are thought to be involved in the perception of pain that accompanies tissue acidosis.  相似文献   

18.
Pre-steady-state kinetic analyses of the catalytic subunit of cAMP-dependent protein kinase showed that the rate constant for phosphoryl transfer is fast and either the release of one or both of the products or a conformational change controls turnover [Grant, B., & Adams, J. A. (1996) Biochemistry 35, 2022-2029]. To determine which step or steps control turnover in the wild-type enzyme, we used a catalytic trapping technique to measure directly the dissociation rate constant for ADP. The phosphorylation of two peptide substrates, LRRASLG and GRTGRRNSI, was monitored using a rapid quench flow technique under conditions where saturating concentrations of ADP were preequilibrated with the enzyme before excess ATP and one of the substrates were added to trap the free enzyme and to start the phosphorylation reaction. Under ADP preequilibration conditions, no 'burst' phase was observed, and although the rate of linear, steady-state turnover was unaffected, the net production of phosphopeptide lagged behind the non-preequilibrated control. This phenomenon occurs due to the slow release of the product, and kinetic modeling suggests that this effect can be explained if the dissociation rate constant for ADP is 24 s-1 and solely limits turnover (kcat = 23 s-1) for the phosphorylation of LRRASLG. Using GRTGRRNSI, the dissociation rate constant for ADP is 35 s-1 and limits turnover (kcat = 29 s-1) if the reaction is initiated by the addition of enzyme. Under preequilibration conditions with either ATP or GRTGRRNSI, turnover is approximately 50% lower, suggesting that ADP release may partially control this parameter. This preequilibration effect can be explained by slowly interconverting enzyme forms with specific peptide-induced turnover properties. These studies indicate that ADP release is an essential rate-limiting component for turnover but also suggests that other factors contribute subtly when the structure of the substrate is altered.  相似文献   

19.
Short- and long-term ethanol exposures have been shown to alter cellular levels of cAMP, but little is known about the effects of ethanol on cAMP-dependent protein kinase (PKA). When cAMP levels increase, the catalytic subunit of PKA (C alpha) is released from the regulatory subunit, phosphorylates nearby proteins, and then translocates to the nucleus, where it regulates gene expression. Altered localization of C alpha would have profound effects on multiple cellular functions. Therefore, we investigated whether ethanol alters intracellular localization of C alpha. NG108-15 cells were incubated in the presence or absence of ethanol for as long as 48 h, and localization of PKA subunits was determined by immunocytochemistry. We found that ethanol exposure produced a significant translocation of C alpha from the Golgi area to the nucleus. C alpha remained in the nucleus as long as ethanol was present. There was no effect of ethanol on localization of the type I regulatory subunit of PKA. Ethanol also caused a 43% decrease in the amount of type I regulatory subunit but had no effect on the amount of C alpha as determined by Western blot. These data suggest that ethanol-induced translocation of C alpha to the nucleus may account, in part, for diverse changes in cellular function and gene expression produced by alcohol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号