首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polychlorinated biphenyl (PCB)-contaminated sediments remain a significantthreatto humans and aquatic ecosystems. Dredging and disposal is costly, so viable in situ technologies to dechlorinate PCBs are needed. This study demonstrates that nanoscale zerovalent iron (ZVI) dechlorinates PCBs to lower-chlorinated products under ambient conditions, provides insight into structure-activity relationships between PCB isomers, and compares the reactivity of nanoscale ZVI to that of palladized microscale ZVI. Six PCB congeners were studied (22', 34', 234, 22'35', 22'45', and 33'44') to compare the initial rate of dechlorination of each and to monitor the order in which chlorines are removed. Using 200 g/L of nanoscale ZVI in a 30% MeOH/water mixture, observed surface-area-normalized pseudo-first-order PCB dechlorination rate constants ranged from 1 x 10(-6) to 5.5 x 10(-4) L yr(-1) m(-2) depending on the PCB congener tested. Using 200 g/L of palladized (0.05 wt %) microscale ZVI, surface-area-normalized pseudo-first-order PCB dechlorination rate constants were significantly faster and ranged from 3.8 x 10(-2) to 1.7 x 10(-1) L yr(-1) m(-2), but these rates were not sustainable. For nanoscale ZVI, nonorthosubstituted congeners had faster initial dechlorination rates than orthosubstituted congeners in the same homologue group. Chlorines in the para and meta position were predominantly removed over chlorines in the ortho position, which suggests that more-toxic coplanar PCB congeners are not likely to form from less-toxic noncoplanar, orthosubstituted congeners. Complete dechlorination was not observed over the course of the experiments. PCB dechlorination is rapid enough that nanoscale ZVI may offer novel in situ remedial alternatives for PCB-contaminated sediments.  相似文献   

3.
This paper describes a modeling approach that simulates changes in particle size distribution and density due to aggregation by extending the Smoluchowski aggregation kinetic model to particles of different density. Batch flocculation studies were conducted for clay, colloidal silica, crude oil, clay-crude oil, and silica-crude oil systems. A parameter estimation algorithm was used to estimate homogeneous collision efficiencies (alphaHOMO) for single-particle-type systems and heterogeneous collision efficiencies (alphaHET) for two-particle-type systems. Homogeneous collision efficiency values (alphaHOMO) were greater for clay (0.7) and for crude oil (0.3) than for silica (0.01). Thus, clay and crude oil were classified as cohesive particles while silica was classified as noncohesive. Heterogeneous collision efficiencies were similar for oil-clay (0.4) and oil-silica (0.3) systems. Thus, crude oil increases the aggregation of noncohesive particles. Data from the calibrated aggregation model were used to estimate apparent first-order flocculation rates (K') for oil, clay, and silica and apparent second-order flocculation rates (K') for oil and clay in oil-clay systems and for oil and silica in oil-silica systems. For oil or clay systems, aggregation Damk?hler numbers ranged from 0.1 to 1.0, suggesting that droplet coalescence and clay aggregation can occur on the same time scales as oil resurfacing and clay settling, respectively. For mixed oil-clay systems, the relative time scales of clay settling and clay-oil aggregation were also within an order of magnitude. Thus, oil-clay aggregation should be considered when modeling crude oil transport in nearshore waters.  相似文献   

4.
This study investigated the reaction mechanisms of nitrate (NO3-) with zerovalent iron (ZVI) media under conditions relevantto groundwatertreatment using permeable reactive barriers (PRB). Reaction rates of NO3- with freely corroding and with cathodically or anodically polarized iron wires were measured in batch reactors. Tafel analysis and electrochemical impedance spectroscopy (EIS) were used to investigate the reactions occurring on the iron surfaces. Reduction of NO3- by corroding iron resulted in near stoichiometric production of NO2-, which did not measurably react in the absence of added Fe(II). Increasing NO3- concentrations resulted in increasing corrosion currents. However, EIS and Tafel analyses indicated that there was little direct reduction of NO3- at the ZVI surface, despite the presence of water reduction. This behavior can be attributed to formation of a microporous oxide on the iron surfaces that blocked reduction of NO3- and NO2- but did not block water reduction. This finding is consistent with previous observations that NO3- impedes reduction of organic compounds by ZVI. Nitrite concentrations greater than 4 mM resulted in anodic passivation of the iron, but passivation was not observed with NO3- concentrations as high as 96 mM. This indicates that the passivating oxide preventing NO3- reduction was permeable toward cation migration. Since reaction with Fe(0) can be excluded asthe mechanism for NO3- and NO2- reduction, reaction with Fe(II)-containing oxides coating the iron surface is the most likely reaction mechanism. This suggests that short-term batch tests requiring little turnover of reactive sites on the iron surface may overestimate long-term rates of NO3- removal because the effects of passivation are not apparent in batch tests conducted with high initial Fe(II) to NO3- ratios.  相似文献   

5.
Trichloroethene (TCE) is one of the most common pollutants in groundwater, and Cs+ can be a cocontaminant at nuclear facilities. Smectite clays have large surface areas, are common in soils, have high affinities for some organic contaminants, and hence can potentially influence the transport of organic pollutants entering soils and sediments. The exchangeable cations present near smectite clay surfaces can radically influence the sorption of organic pollutants by soil clays. This research was undertaken to determine the effect of Cs+, and other common interlayer cations, such as K+ and Ca2+, on the sorption of TCE by a reference smectite clay saponite. Cs-saturated clay sorbed the most TCE, up to 3500 mg/kg, while Ca-saturated smectite sorbed the least. We hypothesize that the stronger sorption of TCE by the Cs-smectite can be attributed to the lower hydration energy and hence smaller hydrated radius of Cs+, which expands the lateral clay surface domains available for sorption. Also, Cs-smectite interlayers are only one or two water layers thick, which may drive capillary condensation of TCE. Our results implicate enhanced retention of TCE in aquifer materials containing smectites accompanied by Cs+ cocontamination.  相似文献   

6.
Subsurface injection of nanoscale zerovalent iron (NZVI) has been used for the in situ remediation of chlorinated solvent plumes and DNAPL source zones. Due to the cost of materials and placement,the efficacy of this approach depends on the NZVI reactivity and longevity, selectivity for the target contaminant relative to nonspecific corrosion to yield H2, and access to the Fe0 in the particles. Both the reaction pH and the age of the particles (i.e., Fe0 content) could affect NZVI reactivity and longevity. Here, the rates of H2 evolution and trichloroethene (TCE) reduction are measured over the lifetime of the particles and at solution pH ranging from 6.5 to 8.9. Crystalline reactive nanoscale iron particles (RNIP) with different initial Fe0 weight percent (48%, 36%, 34%, 27%, and 9.6%) but similar specific surface area were studied. At the equilibrium pH for a Fe(OH)2/H2O system (pH = 8.9), RNIP exhibited first-order decay for Fe0 corrosion (H2 evolution) with respect to Fe0 content with a Fe0 half-life time of 90-180 days. A stable surface area-normalized TCE reduction rate constant 1.0 x 10(-3)L x hr(-1) x m(-2) was observed after 20 days and remained constant for 160 days, while the Fe0 content of the particles decreased by half, suggesting that TCE reduction is zero-order with respect to the Fe0 content of the particle. Solution pH affected H2 evolution and TCE reduction to a different extent. Decreasing pH from 8.9 to 6.5 increased the H2 evolution rate constant 27 fold from 0.008 to 0.22 day(-1), but the TCE dechlorination rate constant only doubled. The dissimilarities between the reaction orders of H2 evolution and TCE dechlorination with respect to both Fe0 content and H+ concentration suggest that different rate controlling steps are involved for the reduction reactions.  相似文献   

7.
Polybrominated diphenyl ethers (PBDEs) are widespread global contaminants due to their extensive usage as flame retardants. Among the 209 PBDE congeners, tetra-brominated diphenyl ether (tetra-BDE) (congener 47) and penta-BDEs (congeners 99 and 100) are the most abundant, toxic, and bioaccumulative congeners in the environment. However, little is known about microorganisms that carry out debromination of these congeners under anaerobic conditions. In this study, we describe a coculture GY2 consisting of Dehalococcoides and Desulfovibrio spp., which is capable of debrominating ~1180 nM of congeners 47, 99, and 100 (88-100% removal) to the nonbrominated diphenyl ether at an average rate of 36.9, 19.8, and 21.9 nM day(-1), respectively. Ortho bromines are preferentially removed during the debromination process. The growth of Dehalococcoides links tightly with PBDE debromination, with an estimated growth yield of 1.99 × 10(14) cells per mole of bromide released, while the growth of Desulfovibrio could be independent of PBDEs. The growth-coupled debromination suggests that Dehalococcoides cells in the coculture GY2 are able to respire on PBDEs. Given the ubiquity and recalcitrance of the tetra- and penta-BDEs, complete debromination of these congeners to less toxic end products (e.g. diphenyl ether) is important for the restoration of PBDE-contaminated environments.  相似文献   

8.
Surfactant- (hexadecyltrimethylammonium, HDTMA) modified zeolite (SMZ)/zero-valent iron (ZVI) pellets having high hydraulic conductivity (9.7 cm s(-1)), high surface area (28.2 m2 g(-1)), and excellent mechanical strength were developed. Laboratory column experiments were conducted to evaluate the performance of the pellets for perchloroethylene (PCE) sorption/reduction under dynamic flow-through conditions. PCE reduction rates with the surfactant-modified pellets (SMZ/ZVI) were three times higher than the reduction rates with the unmodified pellets (zeolite/ZVI). We speculate that enhanced sorption of PCE directly onto iron surface by iron-bound HDTMA and/or an increased local PCE concentration in the vicinity of iron surface due to sorption of PCE by SMZ contributed to the enhanced PCE reduction by the SMZ/ZVI pellets. Trichloroethylene and cis-dichloroethylene production during PCE reduction increased with the surfactant-modified pellets, indicating that the surfactant modification may have favored hydrogenolysis over beta-elimination. PCE reduction rate constants increased as the travel velocity increased from 0.5 to 1.9 m d(-1), suggesting that the reduction of PCE in the column systems was mass transfer limited.  相似文献   

9.
Most studies on zerovalent iron (ZVI) were mainly focused on the reductive transformation of halo- or nitrocompounds. Oxidation reactions occurring on ZVI have been recently recognized. In this study, we demonstrate that the oxidation pathways on ZVI can be accelerated by the presence of polyoxometalate (POM: nanosized metaloxygen cluster anion) serving as an electron shuttle. The ions, SiW12O40(4-) and PW12O40(3-), can mediate the electron transfer from the Fe0 surface to 02 while enhancing the production of H2O2, which subsequently initiates the OH radical-mediated oxidation through a Fenton-type reaction. The oxidation reaction was completely quenched by adding methanol as an OH radical-scavenger. On the other hand, PMo12O40(3-) completely inhibited the oxidative degradation by irreversibly scavenging an electron and holding it. We systematically investigated the effects of iron loading, the concentration of POM, and pH on the oxidative degradation kinetics of 4-chlorophenol in the POM-mediated ZVI system. The POM-mediated oxidations on ZVI were additionally tested for 12 organic contaminants and the rates were compared. Their oxidative degradation on ZVI was mostly enhanced in the presence of POM (SiW12O40(4-)). The present study provides a good model system upon which the ZVI-based oxidation technologies can be successfully enhanced and modified for further developments.  相似文献   

10.
ABSTRACT:  The purpose of this study was to produce and characterize core-shell biopolymer particles based on electrostatic deposition of an anionic polysaccharide (beet pectin) onto amphoteric protein aggregates (heat-denatured β-lactoglobulin [β-lg]). Initially, the optimum conditions for forming stable protein particles were established by thermal treatment (80 °C for 15 min) of 0.5 wt%β-lg solutions at different pH values (3 to 7). After heating, stable submicron-sized ( d = 100 to 300 nm) protein aggregates could be formed in the pH range from 5.6 to 6. Core-shell biopolymer particles were formed by mixing a suspension of protein aggregates (formed by heating at pH 5.8) with a beet pectin solution at pH 7 and then adjusting the pH to values where the beet pectin is adsorbed (< pH 6). The impact of pH (3 to 7) and salt concentration (0 to 250 mM NaCl) on the properties of the core-shell biopolymer particles formed was then established. The biopolymer particles were stable to aggregation from pH 4 to 6, but aggregated at lower pH values because they had a relatively small ζ-potential. The biopolymer particles remained intact and stable to aggregation up to 250 mM NaCl at pH 4, indicating that they had good salt stability. The core-shell biopolymer particles prepared in this study may be useful for encapsulation and delivery of bioactive food components or as substitutes for lipid droplets.  相似文献   

11.
The influence of natural organic matter (NOM) on the adsorption of Al, Fe, Zn, and Pb onto clay minerals was investigated. Adsorption experiments were carried out at pH = 5 and pH = 7 in the presence and absence of NOM. In general, the presence of NOM decreased the adsorption of metal ions onto the clay particles. Al and Fe were strongly influenced by NOM, whereas Zn and Pb adsorption was only slightly altered. The interaction of the metal ions with the minerals and the influence of NOM on this interaction was investigated by coupling SdFFF with an inductively coupled plasma mass spectrometer (ICPMS) or an inductively coupled plasma atomic emission spectrometer (ICPAES). Quantitative atomization of the clay particles in the ICP was confirmed by comparing elemental content determined by direct injection of the clay into the ICPMS with values from acid digestion. Particle sizes of the clays were found to be between 0.1 and 1 microm by sedimentation field-flow fractionation (SdFFF) with UV detection. Aggregation of particles due to metal adsorption was observed using SdFFF-ICPMS measurements. This aggregation was dependent on the specific metal ion and decreased in the presence of NOM and at higher pH value.  相似文献   

12.
Reductive transformation reactions involving mineral-bound Fe2+ species are of great relevance for the fate of groundwater contaminants. For clay minerals, which are ubiquitously present in soils and sediments, the factors determining the reactivity of structural Fe2+ and surface-bound Fe2+ are not well understood. We investigated the reactivity and availability of Fe2+ species in suspensions of chemically reduced montmorillonite (SAz-1) as well as in suspensions of oxidized and reduced nontronite (SWa-1, ferruginous smectite) using two acetylnitrobenzene isomers as reactive probe compounds. The analyses of the reduction kinetics of the two nitroaromatic compounds (NACs) suggested that Fe2+ bound in the octahedral layer of reduced smectites is the predominant reductant and that electron transfer presumably occurs via basal siloxane planes. In contrast, reduction of NACs by Fe2+ associated with oxidized nontronite is orders of magnitude slower than reduction by octahedral Fe2+. Reductive transformation and reversible, nonreactive electron donor-acceptor (EDA) complexation of NACs at basal smectite surfaces occur simultaneously at reduced montmorillonite exhibiting low structural iron content. In contrast, EDA complexation was not observed in suspensions of reduced iron-rich nontronite. Due to the similar reduction rate constants measured for the two NACs, we propose that the (re)- generation of octahedral Fe2+ sites, e.g., by electron transfer and/or Fe rearrangement within the octahedral nontronite layers, partly limited the rate of contaminant transformation. Since iron in clay minerals is available for microbial reduction, our study suggests that octahedral Fe2+ can contribute to abiotic contaminant transformation in anoxic environments.  相似文献   

13.
Photolytic debromination of decabromodiphenyl ether (BDE 209)   总被引:8,自引:0,他引:8  
Polybrominated diphenyl ethers (PBDE) are commonly used flame retardants. During the past years, concerns have increased due to their occurrence in the environment and humans. In general, the concentrations of lower brominated (tetra-penta) diphenyl ethers in biota exceed those of the most heavily used product, decabromodiphenyl ether (DecaBDE). In this study, the photolytic debromination of DecaBDE has been investigated in order to study the formation of lower brominated diphenyl ethers. The time course of photolysis of DecaBDE was studied in toluene, on silica gel, sand, sediment and soil using artificial sunlight and on the natural matrices (sediment, soil, sand) also using natural sunlight. DecaBDE was photolytically labile and formed debromination products in all matrices studied. Nona- to tetraBDEs were formed as well as some PBDFs. The half-lives in toluene and on silica gel were less than 15 min, and half-lives on other matrices ranged between 40 and 200 h. No differences were seen in the debromination pattern of BDE congeners sequentially formed in the different matrices or under different light conditions. However, the debromination rates were strongly dependent on the matrix with longer half-lives on natural matrices than artificial ones.  相似文献   

14.
Biological reduction of perchlorate by autotrophic microorganisms attached to zerovalent iron (ZVI) was studied in flow-through columns. The effects of pH, flow rate, and influent perchlorate and nitrate concentrations on perchlorate reduction were investigated. Excellent perchlorate removal performance (> or = 99%) was achieved at empty bed residence times (EBRTs) ranging from 0.3 to 63 h and an influent perchlorate concentration of 40-600 microg L(-1). At the longest liquid residence times, when the influent pH was above 7.5, a significant increase of the effluent pH was observed (pH > 10.0), which led to a decrease of perchlorate removal. Experiments at short residence times revealed that the ZVI column inoculated with local soil (Colton, CA) containing a mixed culture of denitrifiers exhibited much better performance than the columns inoculated with Dechloromonas sp. HZ for reduction of both perchlorate and nitrate. As the flow rate was varied between 2 and 50 mL min(-1), corresponding to empty bed contact times of 0.15-3.8 h, a maximum perchlorate elimination capacity of 3.0 +/- 0.7 g m(-3) h(-1) was obtained in a soil-inoculated column. At an EBRT of 0.3 h and an influent perchlorate concentration of 30 microg L(-1), breakthrough (> 6 ppb) of perchlorate in the effluent did not occur until the nitrate concentration in the influent was 1500 times (molar) greater than that of perchlorate. The mass of microorganisms attached on the solid ZVI/sand was found to be 3 orders of magnitude greater than that in the pore liquid, indicating that perchlorate was primarily reduced by bacteria attached to ZVI. Overall, the process appears to be a promising alternative for perchlorate remediation.  相似文献   

15.
The combined removal of chlorinated ethenes and heavy metals from a simulated groundwater matrix by zerovalent iron (ZVI) was investigated. In batch, Ni (5-100 mg L(-1)) enhanced trichloroethene (TCE, 10 mg L(-1)) reduction by ZVI (100 g L(-1)) due to catalytic hydrodechlorination by bimetallic Fe0/Ni0. Cr(VI) or Zn (5-100 mg L(-1)) lowered TCE degradation rates by a factor of 2 to 13. Cr(VI) (100 mg L(-1)) in combination with Zn or Ni (50-100 mg L(-1)) inhibited TCE degradation. Addition of 20% H2(g) in the headspace, or of Zn (50-100 mg L(-1)), enhanced TCE removal in the presence of Ni and Cr(VI). Sorption of Zn to ZVI alleviated the Cr(VI) induced inhibition of bimetallic Fe0/Ni0 apparently due to release of protons necessary for TCE hydrodechlorination. In continuous ZVI columns treating tetrachloroethene (PCE, 1-2 mg L(-1)) and TCE (10 mg L(-1)), and a mixture of the metals Cr(VI), Zn(II), and Ni(II) (5 mg (L-1)), the PCE removal efficiency decreased from 100% to 90% in columns operated without heavy metals. The PCE degradation efficiency remained above 99% in columns receiving heavy metals as long as Ni was present. The findings of this study indicate the feasibility and limitations of the combined treatment of mixtures of organic and inorganic pollutants by ZVI.  相似文献   

16.
针对常规分散加工荧光颜料分散体粒径较大,稳定性较差的问题,采用细乳液聚合法制备了纳米乳胶荧光颜料,并将其作为着色剂用于改性棉织物染色,探讨了纳米荧光乳胶颜料对阳离子化棉织物的染色工艺。结果表明,依据本法制备的纳米乳胶荧光颜料的平均粒径为162 nm,Zeta电位为-34.3 mV,最大吸收波长为425 nm,最大荧光发射波长为517 nm。该着色剂对棉织物的染色性能与其阳离子化程度密切相关,在改性剂3-氯-2-羟基丙基三甲基氯化铵用量为0.10 mol/L时,改性棉织物较佳的染色工艺为pH值为7,染色温度50 °C,染色时间40 min,浴比1:30,染色织物具有良好的干湿摩擦牢度。  相似文献   

17.
A series of batch experiments were performed to study the combination of zero-valent iron (ZVI) with perchlorate-reducing microorganisms (PRMs) to remove perchlorate from groundwater. In this method, H2 produced during the process of iron corrosion by water is used by PRMs as an electron donor to reduce perchlorate to chloride. Perchlorate degradation rates followed Monod kinetics, with a normalized maximum utilization rate (rmax) of 9200 microg g(-1) (dry wt) h(-1) and a half-velocity constant (Ks) of 8900 microg L(-1). The overall rate of perchlorate reduction was affected by the biomass density within the system. An increase in the OD600 from 0.025 to 0.08 led to a corresponding 4-fold increase of perchlorate reduction rate. PRM adaptation to the local environment and initiation of perchlorate reduction was rapid under neutral pH conditions. At the initial OD600 of 0.015, perchlorate reduction followed pseudo-first-order reaction rates with constants of 0.059 and 0.033 h(-1) at initial pH 7 and 8, respectively. Once perchlorate reduction was established, the bioreductive process was insensitive to the increases of pH from near neutral to 9.0. In the presence of nitrate, perchlorate reduction rate was reduced, but not inhibited completely.  相似文献   

18.
Sand-packed columns were used to study the transport of micro- and nanoiron particle suspensions modified with anionic polyelectrolytes. With microscale carbonyl iron powder (CIP), the profiles of initial and eluted particle diameters were compared with simulations based on classical filtration theory (CFT), using both the Tufenkji-Elimelech (TE) and Rajagopalan-Tien (RT) models. With particle size distributions that peaked in the submicron range, there was reasonable agreement between both models and the eluted distributions. With distributions that peaked in the 1.5 mirom range, however, the eluted distributions were narrower and shifted to a smaller particle size than predicted by CFT. Apparent sticking coefficients depended on column length and flow rate, and the profile of retained iron in the columns did not follow the log-linearform expected from CFT. These observations could be rationalized in terms of the secondary energy minimum model recently proposed by Tufenkji and Elimelech (Langmuir 2005, 21, 841). For microiron, sticking coefficients correlated well with particle zeta potentials and polyacrylate (PAA) concentration. With nanoscale iron particles, there was no apparent correlation between filtration length and total electrolyte concentration. However, mixtures of PAA with poly (4-styrenesulfonate) and bentonite clay significantly enhanced nanoiron transport, possibly by affecting the aggregation of the particles.  相似文献   

19.
The rates of microbial Fe(III) reduction of three sizes of hematite nanoparticles by Geobacter sulfurreducens were measured under two H2 partial pressures (0.01 and 1 atm) and three pH (7.0, 7.5, and 8.0) conditions. Hematite particles with mean primary particle sizes of 10, 30, and 50 nm were synthesized by a novel aerosol method that allows tight control of the particle size distribution. The mass-normalized reduction rates of the 10 and 30 nm particles were comparable to each other and higher than the rate for the 50 nm particles. However, the surface area-normalized rate was highest for the 30 nm particles. Consistent with a previously published model, the reduction rates are likely to be proportional to the bacteria-hematite contact area and not to the total hematite surface area. Surface area-normalized iron reduction rates were higher than those reported in previous studies, which may be due to the sequestration of Fe(II) through formation of vivianite. Similar initial reduction rates were observed under all pH and H2 conditions studied.  相似文献   

20.
A permeable reactive barrier (PRB) using zerovalent iron (ZVI) was installed at a site near Ca?on City, CO, to treat molybdenum (Mo) and uranium (U) in groundwater. The PRB initially decreased Mo concentrations from about 4.8 to less than 0.1 mg/L; however, Mo concentrations in the ZVI increased to 2.0 mg/L after about 250 days and continued to increase until concentrations in the ZVI were about 4 times higherthan in the influent groundwater. Concentrations of U were reduced from 1.0 to less than 0.02 mg/L during the same period. Investigations of solid-phase samples indicate that (1) calcium carbonate, iron oxide, and sulfide minerals had precipitated in pores of the ZVI; (2) U and Mo were concentrated in the upgradient 5.1 cm of the ZVI; and (3) calcium was present throughout the ZVI accounting for up to 20.5% of the initial porosity. Results of a column test indicated that the ZVI from the PRB was still reactive for removing Mo and that removal rates were dependenton residence time and pH. The chemical evolution of the PRB is explained in four stages that present a progression from porous media flow through preferential flow and, finally, complete bypass of the ZVI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号