首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A novel method for online, robotic interception of moving objects using visual feedback is proposed in this paper. No prior knowledge of the motion of the object is assumed. Since such objects might depart quickly from the workspace of the robot, fast interception is a critical issue. Thus, a novel time-optimal rendezvous-guidance technique that takes the dynamic limitations of the robot into account has been developed. In the proposed methodology, first, a parallel-navigation rule, originally introduced in the missile-guidance literature, is applied to generate a set of instantaneous task-space velocity commands, which, if executed, would keep the end-effector on a collision course with the object. Subsequently, a rendezvous-guidance method is utilized to reduce the original command set to one with velocity-matching capability. Finally, the fastest velocity command in the reduced set is chosen such that the dynamic limitations of the actuators of the robot are not violated. The proposed algorithm results in a fast and robust interception as shown by several simulation examples in 2D and 3D workspace.  相似文献   

2.
The following study deals with motion optimization of robot arms having to transfer mobile objects grasped when moving. This approach is aimed at performing repetitive transfer tasks at a rapid rate without interrupting the dynamics of both the manipulator and the moving object. The junction location of the robot gripper with the object, together with grasp conditions, are partly defined by a set of local constraints. Thus, optimizing the robot motion in the approach phase of the transfer task leads to the statement of an optimal junction problem between the robot and the moving object. This optimal control problem is characterized by constrained final state and unknown traveling time. In such a case, Pontryagin"s maximum principle is a powerful mathematical tool for solving this optimization problem. Three simulated results of removing a mobile object on a conveyor belt are presented; the object is grasped in motion by a planar three-link manipulator.  相似文献   

3.
This paper presents a novel method for the interception of moving targets in the presence of obstacles. The proposed method provides simultaneous positional interception and velocity matching of the target moving in a dynamic environment with static and/or mobile obstacles. An acceleration command for the autonomous robot (i.e., interceptor) is first obtained from a rendezvous-guidance technique that takes into account the kinematic and dynamic limitations of the interceptor, but not the motion of the obstacles. This command is subsequently augmented, though only when necessary, in order to avoid those obstacles that are about to interfere with the time-optimal motion of the interceptor. The augmenter acceleration command is obtained in our work through a modified cell-decomposition method. Extensive simulation and experimental results have clearly demonstrated the efficiency of the proposed interception method, tangibly better than other existing obstacle-avoidance methods.  相似文献   

4.
In the present study, for the first time, flexible multibody dynamics for a three-link serial robot with two flexible links having active prismatic joints is presented using an approximate analytical method. Transverse vibrations of flexible links/beams with prismatic joints have complicated differential equations. This complexity is mostly due to axial motion of the links. In this study, first, vibration analysis of a flexible link sliding through an active prismatic joint having translational motion is considered. A rigid-body coordinate system is used, which aids in obtaining a new and rather simple form of the kinematic differential equation without the loss of generality. Next, the analysis is extended to include dynamic forces for a three-link planar serial robot called PPP (Prismatic, Prismatic, Prismatic), in which all joints are prismatic and active. The robot has a rigid first link but flexible second and third links. To model the prismatic joint, time-variant constraints are written, and a motion equation in a form of virtual displacement and virtual work of forces/moments is obtained. Finally, an approximate analytical method called the “constrained assumed modes method” is presented for solving the motion equations. For a numerical case study, approximate analytical results are compared with finite element results, which show that the two solutions closely follow each other.  相似文献   

5.
旋翼飞行机器人是面向空中自主作业需求,将旋翼飞行器与多自由度机械臂相结合所提出的新型机器人.该机器人作业过程中旋翼飞行器、机械臂与作业目标之间的动态相对运动以及与作业目标接触过程中未建模外力、力矩扰动使自主控制受到极大挑战.本文将针对旋翼飞行机器人的结构演变及关键技术、作业机构集成技术进行综述.从动力学建模及动力学特性分析、动态运动约束/力约束下的协调规划、非结构环境下的运动和作业控制、面向任务动态操作的环境感知、面向任务的实验系统构建与实验验证五个方面初步构建了旋翼飞行机器人自主作业理论体系.  相似文献   

6.
文志强  蔡自兴 《计算机工程》2007,33(24):197-199
提出了基于移动机器人视觉系统的运动目标提取方法。以视觉系统获取的视频作为研究对象,通过全局运动估计、目标背景的提取、三帧差技术和区域生长方法提取运动目标。采用邻域搜索运动补偿和带约束的区域生长的方法,降低了时间开销。实验结果表明,在时间开销和目标的提取上取得了较好的效果。  相似文献   

7.
This paper presents a novel approach to on-line, robot-motion planning for moving-object interception. The proposed approach utilizes a navigation-based technique, which is robust and computationally efficient for the interception of fast-maneuvering objects. Navigation-based techniques were originally developed for the control of missiles tracking free-flying targets. Unlike a missile, however, the end-effector of a robotic arm is connected to the ground, via a number of links and joints, subject to kinematic and dynamic constraints. Also, unlike a missile, the velocity of the robot and the moving object must be matched for a smooth grasp, thus, a hybrid interception scheme, which combines a navigation-based interception technique with a conventional trajectory tracking method is proposed herein for intercepting fast-maneuvering objects. The implementation of the proposed technique is discussed via numerous simulation examples.  相似文献   

8.
本文为工业机器人提出了一种极点配置控制法,这种控制方法的优点有:一是它的积分作用消除了机器人的微小扰动和稳态误差;二是能任意设置系统的极点,因此能保证闭环系统的稳定性和规定状态变量的暂态响应;三是加入了加速度反馈,抑制了由电枢电感所引起的机械手的振动,最后,给出了PUMA562机器人的计算机仿真和实验结果验证了此控制法的有效性。  相似文献   

9.
郭田 《微型电脑应用》2011,27(8):16-19,72
移动机器人对运动目标的感知和跟踪是实现机器人与环境交互的一项重要能力。针对移动机器人以人为目标的跟踪中在复杂动态环境下经常出现的目标丢失和跟踪模式单一的问题,提出了基于机器学习的人物目标识别算法。该算法可以处理复杂环境下的目标检测和定位。同时设计了交互多模型跟踪算法,可以较好的跟踪以不规律模式运动的目标。最后在交龙移动机器人平台上实现了整个系统,验证了人物目标检测和多模式跟踪算法的鲁棒性和优越性。  相似文献   

10.
多相机视觉运动捕捉系统能通过捕捉标记点的空间坐标来获得运动物体的运动学参数,文中提出了一种基于多相机运动捕捉系统下的通用物体运动数据捕捉方法;首先根据3个标记点组成固定模型获取物体运动过程中对应标记点的瞬时坐标,然后通过向量法求解出被测物体在运动过程中各采集点对应的物体位姿,然后通过卡尔曼滤波方法消除运动捕捉过程中的系统和环境误差的影响,获得平滑的物体位姿运动轨迹,并根据滤波数据计算出物体在各采集点对应的速度、加速度、角速度、角加速度;最后基于协作机器人进行物体的运动数据捕捉实验,验证了所提出物体运动数据捕捉方法的正确性。  相似文献   

11.
《Advanced Robotics》2013,27(5):527-546
Prediction of dynamic features is an important task for determining the manipulation strategies of an object. This paper presents a technique for predicting dynamics of objects relative to the robot's motion from visual images. During the training phase, the authors use the recurrent neural network with parametric bias (RNNPB) to self-organize the dynamics of objects manipulated by the robot into the PB space. The acquired PB values, static images of objects and robot motor values are input into a hierarchical neural network to link the images to dynamic features (PB values). The neural network extracts prominent features that each induce object dynamics. For prediction of the motion sequence of an unknown object, the static image of the object and robot motor value are input into the neural network to calculate the PB values. By inputting the PB values into the closed loop RNNPB, the predicted movements of the object relative to the robot motion are calculated recursively. Experiments were conducted with the humanoid robot Robovie-IIs pushing objects at different heights. The results of the experiment predicting the dynamics of target objects proved that the technique is efficient for predicting the dynamics of the objects.  相似文献   

12.
在动态背景下的运动目标检测中,由于目标和背景两者都是各自独立运动的,在提取前景运动目标时需要考虑由移动机器人自身运动引起的背景变化。仿射变换是一种广泛用于估计图像间背景变换的方法。然而,在移动机器人上使用全方位视觉传感器(ODVS)时,由于全方位图像的扭曲变形会 造成图像中背景运动不一致,无法通过单一的仿射变换描述全方位图像上的背景运动。将图像划分为网格窗口,然后对每个窗口分别进行仿射变换,从背景变换补偿帧差中得到运动目标的区域。最后,根据ODVS的成像特性,通过视觉方法解析出运动障碍物的距离和方位信息。实验结果表明,提出的方法能准确检测出移动机器人360°范围内的运动障碍物,并实现运动障碍物的精确定位,有效地提高了移动机器人的实时避障能力。  相似文献   

13.
传统的运动目标跟踪预测算法难以保证机器人对高速运动目标的快速捕捉和提前预测,尤其是运动目标在滑行过程中发生碰撞改变了原有的运动方向,针对这一问题提出了基于帧间差分与碰撞算法相结合的运动目标跟踪预测算法.通过帧间差分法快速识别出平面内运动物体的具体位置和运动速度,根据其运动速度方向判别运动目标是否发生碰撞.当运动目标在运动过程中发生碰撞,采用LS-DYNA显示动力分析软件建立碰撞仿真模型,并用MATLAB拟合仿真数据得到碰撞算法,结合碰撞算法对运动目标的运动轨迹进行预测.结果表明以帧间差分和碰撞算法相结合的运动目标检测跟踪算法对于在平面内运动目标的跟踪预测方面速度更快,完全能够满足机器人对算法快速性的要求.  相似文献   

14.
15.
与地面固定基座机器人不同的是,空间机器人的运动学方程中含有动力学参数。在执行目标捕获任务时,目标动力学参数的不精确会给空间机器人的规划带来致命的影响。针对目标捕获后动力学参数不精确情况下的关节空间规划问题,在建立了自由飘浮空间机器人运动学模型的基础上,给出了雅可比矩阵及其动量守恒方程中的惯性参数以及惯性参数的组合参数线性化的具体形式,提出了一种关节空间的自适应规划方法。以平面二连杆空间机器人为研究对象进行仿真验证。结果表明,所提出的自适应规划方法可以有效降低惯性参数不精确给运动规划带来的影响,为空间机器人执行目标捕获等任务时提供了任务空间内精确轨迹跟踪的能力。  相似文献   

16.
A mathematical model expressing the motion of a pair of multi-DOF robot fingers with hemi-spherical ends, grasping a 3-D rigid object with parallel flat surfaces, is derived, together with non-holonomic constraints. By referring to the fact that humans grasp an object in the form of precision prehension, dynamically and stably by opposable forces, between the thumb and another finger (index or middle finger), a simple control signal constructed from finger-thumb opposition is proposed, and shown to realize stable grasping in a dynamic sense without using object information or external sensing (this is called "blind grasp" in this paper). The stability of grasping with force/torque balance under non-holonomic constraints is analyzed on the basis of a new concept named "stability on a manifold". Preliminary simulation results are shown to verify the validity of the theoretical results.  相似文献   

17.
该文研究双手协调运动和力控制方法.基于一组面向对象的广义运动和力向量的定义, 考虑对象动力学,建立了面向对象的双手对称协调运动方程,该运动方程显式地表示了对象的 运动、内力及环境接触力与双手关节力矩间的关系.据此设计出广义工作空间一级的双手对 称协调力/位混合控制算法,并解决了算法的分解与并行实现问题.在两台PUMA562机械手 上进行的实验表明,本文研究的方法,可以在双手协调运动过程中实现对被操作对象的运动、 内力和环境接触力的混合控制.  相似文献   

18.
In this article, an adaptive neural controller is developed for cooperative multiple robot manipulator system carrying and manipulating a common rigid object. In coordinated manipulation of a single object using multiple robot manipulators simultaneous control of the object motion and the internal force exerted by manipulators on the object is required. Firstly, an integrated dynamic model of the manipulators and the object is derived in terms of object position and orientation as the states of the derived model. Based on this model, a controller is proposed that achieves required trajectory tracking of the object as well as tracking of the desired internal forces arising in the system. A feedforward neural network is employed to learn the unknown dynamics of robot manipulators and the object. It is shown that the neural network can cope with the unknown nonlinearities through the adaptive learning process and requires no preliminary offline learning. The adaptive learning algorithm is derived from Lyapunov stability analysis so that both error convergence and tracking stability are guaranteed in the closed loop system. Finally, simulation studies and analysis are carried out for two three-link planar manipulators moving a circular disc on specified trajectory.  相似文献   

19.
An important task for autonomous industrial robotic systems is the interception of moving objects. In order to achieve this objective, an on-line robot-motion planning technique that utilizes real-time sensory feedback about the object's motion is needed. In this paper, an Ideal Proportional Navigation Guidance (IPNG) based technique is utilized for on-line robot-motion planning. One must note, however, that navigation-guidance techniques were originally developed for bringing the interceptor into a collision course with (hostile) airborne targets. Therefore, in our case, a conventional tracking technique must be utilized as a subsequent phase to an initial IPNG-based robot-motion planning phase in order to ensure smooth interception.The implementation of the hybrid scheme in industrial settings, where one may not have access to the robot's dynamic model nor to the joints' controllers, is discussed. Real-time experimental results using an industrial robot and a computer-vision system are presented, confirming the (interception-time) superiority of our proposed scheme over conventional tracking techniques.  相似文献   

20.
Presents an approach to online, robot-motion planning for moving-object interception. The proposed approach utilizes a navigation-guidance-based technique, that is robust and computationally efficient for the interception of fast-maneuvering objects. Navigation-based techniques were originally developed for the control of missiles tracking free-flying targets. Unlike a missile, however, the end-effector of a robotic arm is connected to the ground, via a number of links and joints, subject to kinematic and dynamic constraints. Also, unlike a missile, the velocity of the robot and the moving object must be matched for a smooth grasp, thus, a hybrid interception scheme, which combines a navigation-based interception technique with a conventional trajectory tracking method is proposed herein for intercepting fast-maneuvering objects. The implementation of the proposed technique is illustrated via numerous simulation examples  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号