首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Different Fe-Al2O3 and FeAl-Al2O3 composites with metallic contents up to 30 vol% have been fabricated via reaction processing of Al2O3, Fe, and Al mixtures. Low Al contents (<∼10 vol%) within the starting mixture lead to composites consisting of Fe embedded in an Al2O3 matrix, whereas aluminide-containing Al2O3 composites result from powder mixtures with higher Al contents. In both cases, densification up to 98% TD can be achieved by pressureless sintering in inert atmosphere at moderate temperatures (1450°-1500°C). The proposed reaction sintering mechanism includes the reduction of native oxide layers on the surface of the Fe particles by Al and, in the case of mixtures with high Al contents, aluminide formation followed by sintering of the composites. Density and bending strengths of the reaction-sintered composites depend strongly on the Al content of the starting mixture. In the case of samples containing elemental Fe, crack path observations indicate the potential for an increase of fracture toughness, even at room temperature, by crack bridging of the ductile Fe inclusions.  相似文献   

2.
Al2O3–ZrO2–SiC whisker composites were prepared by surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3 and SiC whisker. The fabricated composites were characterized by a uniform spatial distribution of ZrO2 and SiC whisker phases throughout the Al2O3 matrix. The fracture toughness values of the Al2O3–15 vol% ZrO2–20 vol% SiC whisker composites (∼12 MPa.m1/2) are substantially greater than those of comparable Al2O3–SiC whisker composites, indicating that both the toughening resulting from the process zone mechanism and that caused by the reinforced SiC whiskers work simultaneously in hot-pressed composites.  相似文献   

3.
Homogeneous Al2O3 powder/SiC whisker compacts were prepared by suspension processing. By optimizing the conditions for particle/whisker codispersion, castable suspensions could be prepared at total-solids concentrations 50 vol%. Green bodies with high relative density (∼66% to 70%) were obtained with SiC whisker contents in the range of 5 to 30 vol%. Although densification was severely inhibited by the SiC whiskers, significantly higher sintered densities were obtained by suspension processing compared to dry processing.  相似文献   

4.
Simulataneous additions of SrO and Al2O3 to ZrO2 (12 mol% CeO2) lead to the in situ formation of strontium aluminate (SrO · 6Al2O3) platelets (∼0.5 μm in width and 5 to 10 μm in length) within the Ce-TZP matrix. These platelet-containing Ce-TZP ceramics have the strength (500 to 700 MPa) and hardness (13 to 14 GPa) of Ce-TZP/Al2O3 while maintaining the high toughness (14 to 15 MPa ± m1/2) of Ce-TZP. Optimum room-temperature properties are obtained at SrO/Al2O3 molar ratios between 0.025 and 0.1 for ZrO2 (12 mol% CeO2) with starting Al2O3 contents ranging between 15 and 60 vol%. The role of various toughening mechanisms is discussed for these composite ceramics.  相似文献   

5.
Porous Cr3C2 grains (∼300 to 500 μm) with ∼10 wt% of Cr2O3 were prepared by heating a mixture of MgCr2O4 grains and graphite powder at 1450° to 1650°C for 2 h in an Al2O3 crucible covered by an Al2O3 lid with a hole in the center. The porous Cr3C2 grains exhibited a three-dimensional network skeleton structure. The mean open pore diameter and the specific surface area of the porous grains formed at 1600°C for 2 h were ∼3.5 (μm and ∼6.7 m2/g, respectively. The present work investigated the morphology and the formation conditions of the porous Cr3C2 grains, and this paper will discuss the formation mechanism of those grains in terms of chemical thermodynamics.  相似文献   

6.
The fracture strengths of sintered Al2O3 containing 20 and 40 vol% ZrO2(12 mol% CeO2)—zirconia-toughened alumina (ZTA)—composites along with the fracture resistance can be increased (e.g., to ∼900 MPa and >12 Mpa·m1/2, respectively), by increasing the mean grain size of the t -ZrO2 (and the Al2O3) from ∼0.5 μm to ∼3 μm. At these lower t -ZrO2 contents, the fracture strength-fracture resistance curves show a continuous rise as opposed to the strength maxima observed in polycrystalline t -ZrO2(12 mol% CeO2), CeTZP, and ZrO2(12 mol% CeO2) ceramics containing ≤20 vol% Al2O3. The toughened composites also exhibit excellent damage resistance with fracture strengths of 500 MPa retained with surfaces containing ∼150- N Vickers indentations which produce cracks of ∼160-μm radius. Greater damage resistance correlates with an increase in the apparent R -curve response of these composites.  相似文献   

7.
Pressureless sintering of SiC-whisker-reinforced Al2O3 composites was investigated. In Part II of the study, the effects of Y2O3/MgO sintering additives and green body infiltration on densification behavior and microstructure development are reported. Both sintering additives and green body infiltration resulted in enhanced densification. However, the infiltration approach was more effective for samples with high SiC whisker concentrations. Samples with 27 vol% whiskers could be pressureless sintered to ∼93% relative density and ∼3% open porosity. Fracture toughness values and microstructural features (e.g., grain size) for the infiltrated samples remained approximately the same as observed in the uninfiltrated samples.  相似文献   

8.
The composite sol—gel (CSG) technology has been utilized to process SiC—Al2O3 ceramic/ceramic particulate reinforced composites with a high content of SiC (up to 50 vol%). Alumina sol, resulting from hydrolysis of aluminum isopropoxide, has been utilized as a dispersant and sintering additive. Microstructures of the composites (investigated using TEM) show the sol-originating phase present at grain boundaries, in particular at triple junctions, irrespective of the type of grain (i.e., SiC or Al2O3). It is hypothesized that the alumina film originating from the alumina sol reacts with SiO2 film on the surface of SiC grains to form mullite or alumina-rich mullite-glass mixed phase. Effectively, SiC particles interconnect through this phase, facilitating formation of a dense body even at very high SiC content. Comparative sinterability studies were performed on similar SiC—Al2O3 compositions free of alumina sol. It appears that in these systems the large fraction of directly contacting SiC—SiC grains prevents full densification of the composite. The microhardness of SiC—Al2O3 sol—gel composites has been measured as a function of the content of SiC and sintering temperature. The highest microhardness of 22.9 GPa has been obtained for the composition 50 vol% SiC—50 vol% Al2O3, sintered at 1850°C.  相似文献   

9.
The effects of Ni3Al and Al2O3 additions on the mechanical properties of hydroxyapatite (HAp) were investigated. The addition of Ni3Al particles increased the strength as well as the fracture toughness of HAp. However, the improvements in the properties were limited because of the formation of microcracks around the metal particles. The microcracks were formed because of the large difference in the coefficients of thermal expansion between HAp and Ni3Al, and because of the relatively large size of Ni3Al particles (∼20 µm). The addition of submicrometer Al2O3 powder was also effective in increasing the mechanical properties. The flexural strength and the fracture toughness were increased from about 100 MPa and 0.7 MPam1/2, respectively, to 200 MPa and 1.5 MPam1/2 by the addition of 20 vol% Al2O3. When Ni3Al and Al2O3 were added together, the fracture toughness was further increased to 2.3 MPam1/2. This increase in the fracture toughness was attributed to the synergistic effect of matrix strengthening and crack interactions with the metal particles.  相似文献   

10.
Porous Al2O3/20 vol% LaPO4 and Al2O3/20 vol% CePO4 composites with very narrow pore-size distribution at around 200 nm have been successfully synthesized by reactive sintering at 1100°C for 2 h from RE2(CO3)3· x H2O (RE = La or Ce), Al(H2PO4)3 and Al2O3 with LiF additive. Similar to the previously reported UPC-3Ds (uniformly porous composites with a three-dimensional network structure, e.g. CaZrO3/MgO system), decomposed gases in the starting materials formed a homogeneous open porous structure with a porosity of ∼40%. X-ray diffraction, 31P magic-angle spinning nuclear magnetic resonance, scanning electron microscopy, and mercury porosimetry revealed the structure of the porous composites.  相似文献   

11.
The densification behavior and mechanical properties of B4C hot-pressed at 2000°C for 1 h with additions of Al2O3 up to 10 vol% were investigated. Sinterability was greatly improved by the addition of a small amount of Al2O3. The improvement was attributed to the enhanced mobility of elements through the Al2O3 near the melting temperature or a reaction product formed at the grain boundaries. As a result of this improvement in the density, mechanical properties, such as hardness, elastic modulus, strength, and fracture toughness, increased remarkably. However, when the amount of Al2O3 exceeded 5 vol%, the level of improvement in the mechanical properties, except for fracture toughness, was reduced presumably because of the high thermal mismatch between B4C and Al2O3.  相似文献   

12.
The formation of Al2TiO5 has been studied in equimolar Al2O3-TiO2 powder mixtures of ∼1μm particle sizes and moderate purity (∼99.8 wt%) at temperatures around 1300°C, where the free energy of formation is very small. Micro-structural development and reaction kinetics indicate that different mechanisms operate depending on the advancement of the reaction. The rapid initial reaction stage is interpreted as the nucleation-growth of Al2TiO5 cells in a virtually non-reacting matrix. The final reaction stage corresponds to the slow diffusion-controlled elimination of Al2O3 and TiO2 dispersoids trapped during the growth of the initial Al2TiO5 cells.  相似文献   

13.
The sintering behavior of an Al2O3 compact containing uniformly dispersed Al2O3 platelets has been investigated. The results reveal a significant decrease in the sintering rate as well as the formation of voids and cracklike defects in the presence of nonsinterable platelets. The addition of a small amount (2 vol%) of tetragonal-ZrO2 particles enhances the sintering rate, increases end-point density (∼99.5% of theoretical density) and prevents formation of sintering defects.  相似文献   

14.
Seeding a mixture of boehmite (AIOOH) and colloidal ZrO2 with α-alumina particles and sintering at 1400°C for 100 min results in 98% density. The low sintering temperature, relative to conventional powder processing, is a result of the small alumina particle size (∼0.3 μm) obtained during the θ-to α-alumina transformation, homogeneous mixing, and the uniform structure of the sol-gel system. Complete retention of pure ZrO2 in the tetragonal phase was obtained to 14 vol% ZTA because of the low-temperature sintering. The critical grain size for tetragonal ZrO2 was determined to be ∼0.4 μm for the 14 vol% ZrO2—Al2O3 composite. From these results it is proposed that seeded boehmite gels offer significant advantages for process control and alumina matrix composite fabrication.  相似文献   

15.
The sinterabilities of fine zirconia powders including 5 mass% Y2O3 were investigated, with emphasis on the effect of Al2O3 at the initial sintering stage. The shrinkage of powder compact was measured under constant rates of heating (CRH). The powder compact including a small amount of Al2O3 increased the densification rate with elevating temperature. The activation energies at the initial stage of sintering were determined by analyzing the densification curves. The activation energy of powder compact including Al2O3 was lower than that of a powder compact without Al2O3. The diffusion mechanisms at the initial sintering stage were determined using the new analytical equation applied for CRH techniques. This analysis exhibited that Al2O3 included in a powder compact changed the diffusion mechanism from grain boundary to volume diffusions (VD). Therefore, it is concluded that the effect of Al2O3 enhanced the densification rate because of decrease in the activation energy of VD at the initial sintering stage.  相似文献   

16.
Hard lead zirconate titanate (PZT) and PZT/Al2O3 composites were prepared and the alternating-electric-field-induced crack growth behavior of a precrack above the coercive field was evaluated via optical and scanning electron microscopy. The crack extension in the 1.0 vol% Al2O3 composite was significantly smaller than that in monolithic PZT and the 0.5 vol% Al2O3 composite. Secondary-phase Al2O3 dispersoids were found both at grain boundaries and within grains in the composites. A large number of dispersoids were observed at the grain boundaries in the 1.0 vol% Al2O3 composite. It appears that the Al2O3 dispersoids reinforce the grain boundaries of the PZT matrix as well as act as effective pins against microcrack propagation.  相似文献   

17.
The machining and subsequent annealing behavior of an Al2O3-SiC nanocomposite (A12O3+ 5 vol% 0.2 μm SiC particles) was compared to that of single-phase A12O3. The machining-induced residual line force was determined by measuring the extent of elastic bending in thin disk specimens, and the surface roughness was evaluated by profilometry. The results showed that, when the two materials were subjected to the same grinding conditions, they developed compressive residual stresses and surface roughness values of similar magnitude. The maximum thickness of the residual stress layers was estimated to be ∼ 10 μm for the A12O3 and ∼12 μm for the nanocomposite. A direct linear correlation was observed between the residual force and the surface roughness for different machining treatments. Annealing of the machined samples produced complete relaxation of residual stresses in the single-phase Al2O3, whereas only partial stress relaxation occurred for the nanocomposite.  相似文献   

18.
Tribological properties of Ti3SiC2 and Al2O3-reinforced Ti3SiC2 composites (10 and 20 vol% Al2O3) were investigated by using an AISI-52100 bearing steel ball dryly sliding on a linear reciprocating athletic specimen. The friction coefficients were found varying only in a range of 0.1 under the applied loads (2.5, 5, and 10 N), and the wear rates of the composites decreased with increasing Al2O3 content. The enhanced wear resistance is mainly attributed to the hard Al2O3 particles nail the surrounding soft matrix and decentrale the shear stresses under the sliding ball to reduce the wear losses.  相似文献   

19.
NiAl2O4/SiO2 and Co2+-doped NiAl2O4/SiO2 nanocomposite materials of compositions 5% NiO – 6% Al2O3– 89% SiO2 and 0.2% CoO – 4.8% NiO – 6% Al2O3– 89% SiO2, respectively, were prepared by a sol–gel process. NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals were grown in a SiO2 amorphous matrix at around 1073 K by heating the dried gels from 333 to 1173 K at the rate of 1 K/min. The formations of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in SiO2 amorphous matrix were confirmed through X-ray powder diffraction, Fourier transform infrared spectroscopy, differential scanning calorimeter, transmission electron microscopy (TEM), and optical absorption spectroscopy techniques. The TEM images revealed the uniform distribution of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in the amorphous SiO2 matrix and the size was found to be ∼5–8 nm.  相似文献   

20.
The microstructural changes produced by large (38 to 53 μ m), single-crystal ZrO2 inclusions (0, 0.09, 0.30 volume fractions, based on solid volume) within an Al2O3 powder matrix were detailed as a function of constrained densification. Composite powder compacts were produced by pressure filtration for conditions where the Al2O3 slurry was either flocced or dispersed. For both conditions, the ZrO2 inclusions constrained densification. Microstructural observations for all composites revealed (1) the presence of cracks with large opening displacements between inclusions and (2) large density variations within the matrix. The cracks were most frequent at high volume fraction of inclusions in composites produced from flocced slurries and apparently originated during specimen preparation. Their large opening displacment was a result of matrix densification. Fewer cracks were observed in composites produced from dispersed slurries. Instead, these microstructures were dominated by large variations in matrix density, viz., dense regions surrounding low-density regions, not consitent with the initial packing density of the matrix powder. The denser regions were formed early in the densification schedule. The lower-density regions eventually developed into regions containing large, elongated voids as the Al2O3 matrix grains became larger with heat-treatment time. This pore enlargement process was shown to result from the disappearance of necks between originally sintered grains and appeared similar to the thermodynamic instability observed in thin films and constrained fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号