首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
LiNi1/3Co1/3Mn1/3O2作为一种新型的锂离子电池正极材料,其理论容量高达278mAh.g^-1,具有a—NaFeO2型层状结构,制备方法主要高温固相合成法、共沉淀法、流变相反应法、溶胶-凝胶法等,文章对制备方法进行了重点沦述,讨论了相应的电化学性能、结构特征和目前存在的问题,并对层状LiNi1/3Co1/3Mn1/3O2正极材料的发展进行了展望。  相似文献   

3.
层状结构材料LiNi1/3Co1/3Mn1/3O2具有高比容量、高循环性能、低成本和环保等优点,有望取代LiCoO2成为新一代锂离子电池正极材料。在介绍LiNi1/3Co1/3Mn1/3O2的结构特点和电化学反应特性的基础上,对其主要合成方法进行了详细评述,总结了该正极材料的阴阳离子掺杂、复合离子掺杂以及表面包覆改性等技术,指出国内外目前锂离子电池材料研究中存在的问题和未来的发展方向。  相似文献   

4.
采用环氧树脂来均匀分散Li+,Co2+,Mn2+和Ni2+,并通过环氧树脂低温固化来维持离子均匀分散,续以空气中充分煅烧制备LiNi1/3Co1/3Mn1/3O2材料.电化学研究显示,850℃下制得的材料具有更好的充放电性能,0.2 C倍率下的首次充放电容量分别达到186.4和135.1 mAh·g-1.  相似文献   

5.
层状结构LiNi1/3Co1/3Mn1/3O2正极材料制备过程与电化学性能   总被引:1,自引:0,他引:1  
采用固相自引发基团置换法结合高温焙烧制备了亚μm级的LiNi1/3Co1/3Mn1/3O2正极材料。研究了热处理气氛、烧结时间对材料结构及性能的影响。研究结果表明在空气氛围下900℃焙烧20 h制备的LiNi1/3Co1/3Mn1/3O2正极材料具有最佳的电化学性能。  相似文献   

6.
通过浸渍法在正极材料LiNi1/3Co1/3Mn1/3O2的表面包覆MgF2,通过XRD、SEM、交流阻抗(EIS)分析、充放电测试研究了不同量MgF2包覆对LiNi1/3Co1/3Mn1/3O2正极材料的结构与电化学性能的影响。结果表明,MgF2以非晶态形式包覆于LiNi1/3Co1/3Mn1/3O2材料颗粒的表面,当包覆量为3%(物质的量分数,下同)时,三元正极材料具有优良的电化学性能,在3.0~4.6 V充放电范围内0.1C充放电倍率下,首次放电比容量为196.3 mA·h/g,1C循环50次后容量保持率为95.7%,55 ℃高温下1C循环50次后容量保持率为93.3%。  相似文献   

7.
用VGCF为模板,用共沉淀方法辅助合成了棒状结构的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。通过X-射线衍射仪(XRD)、X射线能谱仪(EDX)、扫描电子显微镜(SEM)对其结构进行了表征,并研究了其电化学性能。结果表明:该材料为棒状且表面多孔,并表现出了良好的电化学性能。在0. 2 C(1 C=170 m A/g)的电流密度下,其容量为160 m Ah/g以上,在1 C下经过250个循环后容量仍然有115. 2 m Ah/g,对于制备其他棒状结构的锂离子正极材料提供了一定的借鉴。  相似文献   

8.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2具有放电比容量大、热稳定性好、成本低、安全性能好等优点,但其倍率性能有待进一步提升。本文采用水热法制备了K+掺杂LiNi1/3Co1/3Mn1/3O2材料LNCM-xK。通过X射线衍射谱、场发射扫描电镜和X射线光电子能谱表征LNCM-xK的形貌和结构,通过电化学工作站和蓝电测试系统测试其电化学性能。结果表明:K+掺杂能有效降低阳离子混排程度,改善LiNi1/3Co1/3Mn1/3O2材料的电化学性能,其中当x=0.125时K+掺杂LiNi1/3Co1/3Mn1/3O2样品(LNCM-0.125K)阳离子混排程度最低;LNCM-0.125K样品电化学性能最佳,0.2 C下50次循环后容量保持率为96.15%;在不同电流密度(0.2 C,0.5 C,1 C,2 C,5 C)下进行倍率性能测试,连续充放电30次后LNCM-0.125K样品容量保持率为97.00%。  相似文献   

9.
分别以纳米氧化铝、氢氧化铝及异丙醇铝为原料,采用液相浸渍法对LiNi1/3Co1/3Mn1/3O2材料进行氧化铝包覆,考察不同包覆源在LiNi1/3Co1/3Mn1/3O2材料表面进行氧化铝包覆后对材料电化学性能的影响。SEM及XRD结果显示,产物为层状α-NaFeO2结构,氧化铝均匀包覆在LiNi1/3Co1/3Mn1/3O2材料表面。充放电性能测试结果表明,在3种铝源中,以异丙醇铝为包覆源的材料性能最佳:在3.0~4.6 V的电压下,0.1 C倍率下首次放电比容量为196.1 mA·h/g, 1 C下循环50周后容量保持率为95.6%。  相似文献   

10.
采用微波共沉淀法合成了制备LiNi0.8Co0.2O2的前驱体球形α-Ni0.8Co0.2(OH)2,将其与LiOH·H2O混合,在氧气氛围下,用不同的烧结温度分别烧结10小时获得LiNi0.8Co0.2O2正极材料。用XRD、SEM对所制备的正极材料进行结构和形貌分析,用恒流充放电测试材料的电化学性能。结果表明,烧结温度对材料结构和电化学性能影响较大,所合成材料均具有α-NaFeO2的层状结构,烧结温度越高材料结晶越完善。900℃烧结的LiNi0.8Co0.2O2材料初级颗粒结晶最完善而且其二次团聚粒子的平均粒径最小,其表现出的电化学性能也最好,首次放电容量为189.1mA·h·g-1,首次循环放电效率达到92.5%。30循环后放电容量保持在148 mA·h·g-1,显示出较好的循环稳定性。  相似文献   

11.
采用固相法和沉淀法合成了锂离子电池正极材料LiCo1/3Ni1/3Mn1/3O2探讨了合成温度、不同合成方法对材料的电化学性能的影响。利用充放电测试、循环伏安测试方法对合成的LiCo1/3Ni1/3Mn1/3O2进行了表征。结果表明,固相法900℃煅烧合成的材料电化学性能较好,沉淀法合成的材料电化学性能最好,以10.0mA/g的电流充放电,首次放电比容量为576.0C/g,循环50次后放电比容量仍保持501.5C/g。以100.0mA/g的大电流放电,放电比容量达到430.2C/g。  相似文献   

12.
镍钴锰三元正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2最新研究进展   总被引:1,自引:0,他引:1  
为解决镍钴锰三元材料存在的首次充放电效率低、大倍率性能不够理想等问题,人们对这类材料进行掺杂和表面改性方面开展了大量的研究工作。综述了近年来锂离子电池镍钴锰三元正极材料的合成方法、掺杂以及表面修饰等方面的研究进展,并简要概述了该材料的发展趋势。  相似文献   

13.
高键能异质原子的高效掺杂是稳定高电压LiNi0.5Co0.2Mn0.3O2(NCM)三元正极材料并提升其电化学性能的有效策略。借助含硼前体在二次颗粒表面富集及随后高温煅烧强化B3+体相扩散的策略,构建了硼离子高效掺杂NCM正极材料(NCM-B)。引入B—O键(键能:809 kJ·mol-1)抑制了电化学反应过程中晶格氧析出,进而稳定材料的氧离子框架;此外,表面残余的高锂离子导体Li2O-B2O3包覆层可以在一定程度上稳定电极-电解液界面。与改性前NCM相比,改性后的NCM-B正极材料在3.0~4.5 V电压区间的可逆比电容量可以达到193.7 mA·h·g-1,在10 C大功率下,比电容量仍保持120 mA·h·g-1(NCM仅为78.2 mA·h·g-1)。1 C下连续循环100圈后,比电容量保持率从73%提升到90%。表面富集和扩散强化的思想也有望实现其他正极材料的高效掺杂。  相似文献   

14.
LiNi0.5Mn1.5O4正极材料具有高能量密度、三维的锂离子传输通道、无毒、安全性高等优势,成为近些年来锂离子电池领域中最具有研究前景的材料之一.介绍了LiNi05Mn15O4正极材料的结构,综述了LiNi05Mn15O4材料常见的制备和改性方法,着重介绍了LiNi05Mn1.5O4微米级单晶形貌对材料性能的影响,并结合当前研究进展对LiNi0.5Mn1.5O4材料未来的发展趋势进行展望.  相似文献   

15.
研究LiNi1/3Co1/3Mn1/3O2正极材料在四种不同的电解液体系中(LiPF6/EC+DEC(1∶1)、LiPF6/EC+DMC(1∶1)、LiPF∶6/EC+EMC(1∶1)和LiPF∶6/EC+PC+DMC(1∶1∶1))的电化学性能,讨论了正极材料与电解液的相容性。结果表明在1 mol·L-1LiPF6/EC+PC+DMC(1∶1∶1)电解液体系中,2.8~4.6 V电压范围内,LiNi1/3Co1/3Mn1/3O2的电化学性能最好,其首次放电比容量可达202.17 mA·h·g-1,50次的容量保持率可达88.58%。  相似文献   

16.
主要考察了电解液浸泡对Li Ni1/3Co1/3Mn1/3O2粉料的影响,通过扫描电镜(SEM)观察了不同条件下粉体的形貌,采用X射线衍射仪及拉曼光谱仪表征晶体的结构,并将样品组装成电池,比较了不同条件处理下样品的首次放电及倍率性能。结果表明,电解液浸泡对Li Ni1/3Co1/3Mn1/3O2的形貌和晶体结构影响较小,但对粉体的电阻率和电池的容量有较大影响,而且随着浸泡温度的升高,其粉体电阻率和放电比容量均下降。  相似文献   

17.
18.
本文用溶胶凝胶法制备了LiNi0.5Mn1.5O4正极材料,然后用ZnF2对其进行表面包覆。XRD测试表明,包覆处理没有影响材料的晶体结构,EDS、SEM和TEM测试表明,2wt%ZnF2在LiNi0.5Mn1.5O4表面形成了约7 nm厚的均匀包覆层。对未包覆、1wt%、2wt%、3wt%包覆后的材料进行电化学性能测试对比,发现包覆后都能减弱电解液与基体间的相互作用,较大地稳定电极表面,提高了材料的电化学性能。其中,2wt%ZnF2包覆样品表现出最佳的电化学性能,0.2 C倍率下循环200圈后,其放电比容量维持在109 mAh/g,容量保持率为79.7%;在10 C时,放电比容量依然高达102.1 mAh/g;5 C高倍率下循环500圈后,放电比容量维持在94.2 mAh/g,容量保持率为85.6%。  相似文献   

19.
采用机械活化-高温固相法制备了锂离子电池正极材料LiCo1/3Mn1/3Ni1/3O2研究球磨方式与n(Li)/n(M)对合成产物结构与性能的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征。研究结果表明,优化试验条件下制备得到的材料具有良好的循环性能,在电压范围2.7~4.2V内,充放电的电流值为20mA/g时,初始放电比容量为160mA·h/g,30次循环后容量保持率为96.98%。  相似文献   

20.
以尿素为沉淀剂,以乙二醇为溶剂,通过溶剂热法制备出多级前躯体Ni0.8Mn0.1Co0.1CO3,通过焙烧该前躯体和LiOH·H2O的混合物制备出高比容量的锂离子正极材料LiNi0.8Mn0.1Co0.1O2。采用XRD、FESEM及恒流充放电测试对材料的结构、形貌和电化学进行表征,结果表明,合成的产物形貌均一,有高结晶度。在0.1 C倍率下,放电比容量为194.6 mAh g-1;当放电倍率提高到2.0 C时,该材料仍然具有78.4mAhg-1的放电比容量,并且该材料在各个倍率下具有良好的稳定性。在1.0 C的放电倍率下,经过50次循环,放电容量保持率为92.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号