首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this and the following paper we have examined the kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents in order to interpret these currents in terms of the gating behavior of the mslo channel. To do so, however, it was necessary to first find conditions by which we could separate the effects that changes in Ca2+ concentration or membrane voltage have on channel permeation from the effects these stimuli have on channel gating. In this study we investigate three phenomena which are unrelated to gating but are manifest in macroscopic current records: a saturation of single channel current at high voltage, a rapid voltage-dependent Ca2+ block, and a slow voltage-dependent Ba2+ block. Where possible methods are described by which these phenomena can be separated from the effects that changes in Ca2+ concentration and membrane voltage have on channel gating. Where this is not possible, some assessment of the impact these effects have on gating parameters determined from macroscopic current measurements is provided. We have also found that without considering the effects of Ca2+ and voltage on channel permeation and block, macroscopic current measurements suggest that mslo channels do not reach the same maximum open probability at all Ca2+ concentrations. Taking into account permeation and blocking effects, however, we find that this is not the case. The maximum open probability of the mslo channel is the same or very similar over a Ca2+ concentration range spanning three orders of magnitude indicating that over this range the internal Ca2+ concentration does not limit the ability of the channel to be activated by voltage.  相似文献   

2.
Large conductance calcium- and voltage-sensitive K+ (MaxiK) channels share properties of voltage- and ligand-gated ion channels. In voltage-gated channels, membrane depolarization promotes the displacement of charged residues contained in the voltage sensor (S4 region) inducing gating currents and pore opening. In MaxiK channels, both voltage and micromolar internal Ca2+ favor pore opening. We demonstrate the presence of voltage sensor rearrangements with voltage (gating currents) whose movement and associated pore opening is triggered by voltage and facilitated by micromolar internal Ca2+ concentration. In contrast to other voltage-gated channels, in MaxiK channels there is charge movement at potentials where the pore is open and the total charge per channel is 4-5 elementary charges.  相似文献   

3.
Calcium entry through voltage-gated calcium channels can activate either large- (BK) or small- (SK) conductance calcium-activated potassium channels. In hippocampal neurons, activation of BK channels underlies the falling phase of an action potential and generation of the fast afterhyperpolarization (AHP). In contrast, SK channel activation underlies generation of the slow AHP after a burst of action potentials. The source of calcium for BK channel activation is unknown, but the slow AHP is blocked by dihydropyridine antagonists, indicating that L-type calcium channels provide the calcium for activation of SK channels. It is not understood how this specialized coupling between calcium and potassium channels is achieved. Here we study channel activity in cell-attached patches from hippocampal neurons and report a unique specificity of coupling. L-type channels activate SK channels only, without activating BK channels present in the same patch. The delay between the opening of L-type channels and SK channels indicates that these channels are 50-150 nm apart. In contrast, N-type calcium channels activate BK channels only, with opening of the two channel types being nearly coincident. This temporal association indicates that N and BK channels are very close. Finally, P/Q-type calcium channels do not couple to either SK or BK channels. These data indicate an absolute segregation of coupling between channels, and illustrate the functional importance of submembrane calcium microdomains.  相似文献   

4.
Large-conductance Ca-activated potassium channels (BK channels) are uniquely sensitive to both membrane potential and intracellular Ca2+. Recent work has demonstrated that in the gating of these channels there are voltage-sensitive steps that are separate from Ca2+ binding steps. Based on this result and the macroscopic steady state and kinetic properties of the cloned BK channel mslo, we have recently proposed a general kinetic scheme to describe the interaction between voltage and Ca2+ in the gating of the mslo channel (Cui, J., D.H. Cox, and R.W. Aldrich. 1997. J. Gen. Physiol. In press.). This scheme supposes that the channel exists in two main conformations, closed and open. The conformational change between closed and open is voltage dependent. Ca2+ binds to both the closed and open conformations, but on average binds more tightly to the open conformation and thereby promotes channel opening. Here we describe the basic properties of models of this form and test their ability to mimic mslo macroscopic steady state and kinetic behavior. The simplest form of this scheme corresponds to a voltage-dependent version of the Monod-Wyman-Changeux (MWC) model of allosteric proteins. The success of voltage-dependent MWC models in describing many aspects of mslo gating suggests that these channels may share a common molecular mechanism with other allosteric proteins whose behaviors have been modeled using the MWC formalism. We also demonstrate how this scheme can arise as a simplification of a more complex scheme that is based on the premise that the channel is a homotetramer with a single Ca2+ binding site and a single voltage sensor in each subunit. Aspects of the mslo data not well fitted by the simplified scheme will likely be better accounted for by this more general scheme. The kinetic schemes discussed in this paper may be useful in interpreting the effects of BK channel modifications or mutations.  相似文献   

5.
6.
Local calcium transients ('Ca2+ sparks') are thought to be elementary Ca2+ signals in heart, skeletal and smooth muscle cells. Ca2+ sparks result from the opening of a single, or the coordinated opening of many, tightly clustered ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR). In arterial smooth muscle, Ca2+ sparks appear to be involved in opposing the tonic contraction of the blood vessel. Intravascular pressure causes a graded membrane potential depolarization to approximately -40 mV, an elevation of arterial wall [Ca2+]i and contraction ('myogenic tone') of arteries. Ca2+ sparks activate calcium-sensitive K+ (KCa) channels in the sarcolemmal membrane to cause membrane hyperpolarization, which opposes the pressure induced depolarization. Thus, inhibition of Ca2+ sparks by ryanodine, or of KCa channels by iberiotoxin, leads to membrane depolarization, activation of L-type voltage-gated Ca2+ channels, and vasoconstriction. Conversely, activation of Ca2+ sparks can lead to vasodilation through activation of KCa channels. Our recent work is aimed at studying the properties and roles of Ca2+ sparks in the regulation of arterial smooth muscle function. The modulation of Ca2+ spark frequency and amplitude by membrane potential, cyclic nucleotides and protein kinase C will be explored. The role of local Ca2+ entry through voltage-dependent Ca2+ channels in the regulation of Ca2+ spark properties will also be examined. Finally, using functional evidence from cardiac myocytes, and histological evidence from smooth muscle, we shall explore whether Ca2+ channels, RyR channels, and KCa channels function as a coupled unit, through Ca2+ and voltage, to regulate arterial smooth muscle membrane potential and vascular tone.  相似文献   

7.
The contribution of coagulation factors and fibrinolytic variables to the development of ischaemic arterial disease is still not clearly established. The PRIME study is a prospective cohort study of myocardial infarction in men aged 50-59 years and recruited from three MONICA field centers in France (Lille, Strasbourg and Toulouse) and the center in Northern Ireland (Belfast). Baseline examination included measurement of plasma fibrinogen, factor VII, and PAI-1 activity in over 10,500 participants. We investigated the associations of these haemostatic variables with cardiovascular risk factors, prevalent atherosclerotic disease and geographical area. Fibrinogen level increased with age, smoking, waist-to-hip ratio, LDL-cholesterol, and it decreased with educational level, leisure physical activity, alcohol intake and HDL-cholesterol. Factor VII activity increased with body mass index, waist-to-hip ratio, triglycerides. HDL- and LDL-cholesterol. PAI-1 activity increased with body mass index, waist-to-hip ratio, triglycerides, alcohol intake, smoking, and decreased with leisure physical activity. PAI-1 level was higher in diabetic subjects than in subjects without diabetes. Cardiovascular risk factors explained 8%, 9%, and 26% of the total variance in fibrinogen, factor VII, and PAI-1, respectively. Compared with participants without prevalent cardiovascular disease, those with previous myocardial infarction (n = 280), angina pectoris (n = 230), or peripheral vascular disease (n = 19) had significantly higher levels of fibrinogen. but those with stroke (n = 67) had not. PAI-1 activity showed a similar pattern of association. The odds ratio for cardiovascular disease associated with a rise of a one standard deviation in fibrinogen and PAI-1 was 1.31 (95% confidence interval: 1.20 to 1.42, p <0.001) and 1.38 (95% confidence interval: 1.27 to 1.49, p<0.001), respectively. After adjustment for cardiovascular risk factors, these associations were attenuated but remained highly significant. There was no significant association between factor VII activity and prevalent cardiovascular disease. Fibrinogen level and, to a lesser extent, factor VII and PAI-1 activity were higher in Northern Ireland than France after adjustment for the main cardiovascular risk factors. These geographical variations are consistent with the 2 to 3-fold higher incidence of myocardial infarction in Northern Ireland than France. Our results provide further epidemiological evidence for a possible role of fibrinogen and PAI-1 in the pathogenesis of coronary heart disease.  相似文献   

8.
Calcium-activated potassium channels (maxi K+ channels) isolated from avian nasal salt gland cells were reconstituted into lipid bilayers and characterized. The 266 pS channel is blocked discretely by charybdotoxin from the external solution at nanomolar concentrations and by Ba2+ from the cytosolic side at micromolar concentrations. Fast tetraethylammonium (TEA) block is seen as apparent reductions in amplitude of the unitary currents. From the extent of the reductions, TEA binding affinity was calculated to be 0.16 mM from the external solution and 37 mm from internal solution. The overall channel properties conform to those of maxi K+ channels in other epithelial tissues. The calcium sensitivity of the channel was found to be variable from channel to channel, extending over a wide range of concentrations from 1 to 1,000 microM. Examination of the pooled calcium titration curves, revealed that these curves are grouped into five clusters, and the probability distribution of the clusters matches a binomial distribution. The Hill coefficient derived from the titration curves varies from 1 to 5 and is linearly correlated to calcium binding with a slope of 1 per 10-fold change in Kd. Clustered titration curves with such a characteristic suggest that the gating components and the calcium binding sites of the maxi K+ channels in the avian nasal gland are hetero-tetrameric and may result from random mixing of two distinct subunits possessing high and low calcium sensitivities, respectively.  相似文献   

9.
Cloned large conductance Ca(2+)-activated K+ channels (BK or maxi-K+ channels) from Drosophila (dSlo) were expressed in Xenopus oocytes and studied in excised membrane patches with the patch-clamp technique. Both a natural variant and a mutant that eliminated a putative cyclic AMP-dependent protein kinase phosphorylation site exhibited large, slow fluctuations in open probability with time. These fluctuations, termed "wanderlust kinetics," occurred with a time course of tens of seconds to minutes and had kinetic properties inconsistent with simple gating models. Wanderlust kinetics was still observed in the presence of 5 mM caffeine or 50 nM thapsigargin, or when the Ca2+ buffering capacity of the solution was increased by the addition of 5 mM HEDTA, suggesting that the wanderlust kinetics did not arise from Ca2+ release from caffeine and thapsigargin sensitive internal stores in the excised patch. The slow changes in kinetics associated with wanderlust kinetics could be generated with a discrete-state Markov model with transitions among three or more kinetic modes with different levels of open probability. To average out the wanderlust kinetics, large amounts of data were analyzed and demonstrated up to a threefold difference in the [Ca2+]i required for an open probability of 0.5 among channels expressed from the same injected mRNA. These findings indicate that cloned dSlo channels in excised patches from Xenopus oocytes can exhibit large variability in gating properties, both within a single channel and among channels.  相似文献   

10.
Neuropeptide Y(NPY) inhibits Ca2+-activated K+ channels reversibly in vascular smooth muscle cells from the rat tail artery. NPY (200 microM) had no effect in the absence of intracellular adenosine 5'-triphosphate (ATP) and when the metabolic poison cyanide-M-chlorophenyl hydrozone (10 microM) was included in the intracellular pipette solution. NPY was also not effective when ATP was substituted by the non-hydrolysable ATP analogue adenosine 5'-[beta gamma-methylene]-triphosphate (AMP-PCP). NPY inhibited Ca2+-activated K+ channel activity when ATP was replaced by adenosine 5'-O-(3-thiotriphosphate) (ATP [gamma-S]) and the inhibition was not readily reversed upon washing. Protein kinase inhibitor (1 microM), a specific inhibitor of adenosine 3', 5'-cyclic monophosphate-dependent protein kinase, had no significant effect on the inhibitory action of NPY. The effect of NPY on single-channel activity was inhibited by the tyrosine kinase inhibitor genistein (10 microM) but not by daidzein, an inactive analogue of genistein. These observations suggest that the inhibition by NPY of Ca2+-activated K+ channels is mediated by ATP-dependent phosphorylation. The inhibitory effect of NPY was antagonized by the tyrosine kinase inhibitor genistein.  相似文献   

11.
The developmental expression of macroscopic Ca2+-activated K+ currents (IK[Ca]) in chicken ciliary ganglion (CG) neurons is dependent in part on trophic factors released from preganglionic nerve terminals. Neuregulins are expressed in the preganglionic neurons that innervate the chicken CG and are therefore plausible candidates for this activity. Application of 1 nM beta1-neuregulin peptide for 12 hr evokes a large (7- to 10-fold) increase in IK[Ca] in embryonic day 9 CG neurons, even in the presence of a translational inhibitor. A similar posttranslational effect is produced by high concentrations (10 nM) of epidermal growth factor and type alpha transforming growth factor but not by 10 nM alpha2-neuregulin peptide or by neurotrophins at 40 ng.ml-1. beta1-neuregulin treatment for 12 hr also confers Ca2+ sensitivity onto large-conductance (285 pS) K+ channels observed in inside-out patches. beta-Neuregulins have no effect on voltage-activated Ca2+ currents of CG neurons. These data support the hypothesis that beta-neuregulins mediate the trophic effects of preganglionic nerve terminals on the electrophysiological differentiation of developing CG neurons.  相似文献   

12.
13.
Mesencephalic dopamine-containing neurons exhibit a Ca(2+)-dependent oscillation in membrane potential believed to underlie the ability of these cells to maintain spontaneous activity in the absence of afferent synaptic drive. In the present series of experiments, sharp electrode intracellular recording techniques were used in conjunction with an in vitro brain slice preparation to explore the ionic mechanisms underlying rhythmogenesis in nigral dopamine neurons in the rat. Our results indicate that the K+ channel producing the prolonged post-spike afterhyperpolarization exhibited by these neurons is also principally responsible for generating the falling phase of the autogenous pacemaker oscillation. Alterations in the expression of this conductance are associated with marked changes in neuronal firing pattern, indicating that modulation of ligand-gated Ca(2+)-activated K+ channels may constitute a functional means of altering temporal coding among the major mesotelencephalic dopamine systems.  相似文献   

14.
ABC transporters are a large superfamily of integral membrane proteins involved inATP-dependent transport across biological membranes. Members of this superfamily play roles in a number of phenomena of biomedical interest, including cystic fibrosis (CFTR) and multidrug resistance (P-glycoprotein, MRP). Most ABC transporters are predicted to consist of four domains, two membrane-spanning domains and two cytoplasmic domains. The latter contain conserved nucleotide-binding motifs. Attempts to determine the structure of ABC transporters and of their separate domains are in progress but have not yet been successful. To aid structure determination and possibly learn more about the domain boundaries, we set out to model nucleotide-binding domains (NBDs) of ABC transporters based on a known structure. Previous attempts to predict the 3D structure of NBDs were based solely on sequence similarity with known nucleotide-binding folds. We have analyzed the sequences of a number of nucleotide-binding domains with the algorithm THREADER, developed by D.T. Jones, and a possible fold was found in the structure of aspartate aminotransferase. We present a model for the N-terminal NBD of CFTR, based on the large domain of the A chain of aspartate aminotransferase. The model is refined using multiple sequence alignment, secondary structure prediction, and 3D-1D profiles. Our model seems to be in good agreement with known properties of nucleotide-binding domains and has some appealing characteristics compared with the previous models.  相似文献   

15.
Taicatoxin, isolated from the venom of the Australian taipan snake Oxyuranus scutellatus, has been previously regarded as a specific blocker of high threshold Ca2+ channels in heart. Here we show that taicatoxin (in contrast to a range of other Ca2+ channel blockers) interacts with apamin-sensitive, small conductance, Ca2+-activated potassium channels on both chromaffin cells and in the brain. Taicatoxin displays high affinity recognition of 125I-apamin acceptor-binding sites, present on rat synaptosomal membranes (Ki = 1.45 +/- 0.22 nM) and also specifically blocks affinity-labeling of a 33-kDa 125I-apamin-binding polypeptide on rat brain membranes. Taicatoxin (50 nM) completely blocks apamin-sensitive after-hyperpolarizing slow tail K+ currents generated in rat chromaffin cells (mean block 97 +/- 3%, n = 12) while only partially reducing total voltage-dependent Ca2+ currents (mean block 12 +/- 4%, n = 6). In view of these findings, the use of taicatoxin as a specific ligand for Ca2+ channels should now be reconsidered.  相似文献   

16.
The tetrodotoxin-sensitive sodium ion (Na+) channel is opened by cellular depolarization and favors the passage of Na+ over other ions. Activation of the beta-adrenergic receptor or protein kinase A in rat heart cells transformed this Na+ channel into one that is promiscuous with respect to ion selectivity, permitting calcium ions (Ca2+) to permeate as readily as Na+. Similarly, nanomolar concentrations of cardiotonic steroids such as ouabain and digoxin switched the ion selectivity of the Na+ channel to this state of promiscuous permeability called slip-mode conductance. Slip-mode conductance of the Na+ channel can contribute significantly to local and global cardiac Ca2+ signaling and may be a general signaling mechanism in excitable cells.  相似文献   

17.
The effect of Evans blue (EB) on large-conductance Ca2+-activated K+ (BKCa) channels was investigated in cultured endothelial cells of human umbilical veins. In whole-cell configuration, EB (50 microM) reversibly increased the amplitude of K+ outward currents (IK). When the patch pipettes were filled with 10 mM EGTA, its stimulatory effect on IK was unaltered. Further application of EB in the presence of suramin, a blocker of P2-purinergic receptor, or AOPCP, an inhibitor of 5'-nucleotidase, still increased IK. However, charybdotoxin (100 nM) suppressed EB-induced increase in IK. In inside-out configuration, bath application of EB (50 microM) did not change single channel conductance but significantly increased the activity of BKCa channels. The EB-induced increase in the activity of BKCa channels was independent on internal Ca2+. EB (50 microM) shifted the activation curve of BKCa channels to less positive membrane potentials by approximately 20 mV. The change in the kinetic behavior of BKCa channels caused by EB in these cells is due to an increase in mean open time and a decrease in mean closed time. These results indicate that EB can stimulate the activity of BKCa channel in endothelial cells. This effect is unrelated to its blockade of P2-purinergic receptors or inhibition of 5'-nucleotidase. The direct stimulation of these ionic channels by EB may contribute to its effect on capillary permeability.  相似文献   

18.
What are the relative roles of imitation, improvisation and invention in the development of large song repertoires in species of the songbird family Mimidae? This question was addressed in a laboratory study of the vocal development of young grey catbirds, Dumetella carolinensiscollected from western Massachusetts. Two groups heard a repeated 10-s, tape-tutored segment of catbird song, two other groups heard a repeated 16-min segment and a fifth group heard no tape-tutored songs. One male selected for study from each group developed a large repertoire of seemingly normal songs, and wild males responded strongly to songs of the male that had heard no tape-tutored song. Relying little on precise imitation and largely on improvising or inventing, each male developed a highly unique repertoire. A geographical survey of catbird song revealed little to no evidence of song sharing or microgeographical variation, which is consistent with the idea that imitation plays a relatively minor role in song development. Perhaps simultaneous selection for large repertoires and reduced geographical variation has led to such an emphasis on song individuality and non-imitative developmental processes.  相似文献   

19.
The homologous Kunitz inhibitor proteins, bovine pancreatic trypsin inhibitor (BPTI) and dendrotoxin I (DTX-I), interact with large conductance Ca2+-activated K+ channels (maxi-KCa) by binding to an intracellular site outside of the pore to produce discrete substate events. In contrast, certain homologues of the Shaker ball peptide produce discrete blocking events by binding within the ion conduction pathway. In this study, we investigated ligand interactions of these positively charged peptide molecules by analysis of single maxi-KCa channels in planar bilayers recorded in the presence of DTX-I and BPTI, or DTX-I and a high-affinity homologue of ball peptide. Both DTX-I (Kd, 16.5 nM) and BPTI (Kd, 1, 490 nM) exhibit one-site binding kinetics when studied alone; however, records in the presence of DTX-I plus BPTI demonstrate simultaneous binding of these two molecules. The affinity of BPTI (net charge, +6) decreases by 11.7-fold (Kd, 17,500 nM) when DTX-I (net charge, +10) is bound and, conversely, the affinity of DTX-I decreases by 10.8-fold (Kd, 178 nM) when BPTI is bound. The ball peptide homologue (BP; net charge, +6) exhibits high blocking affinity (Kd, 7.2 nM) at a single site when studied alone, but has 8.0-fold lower affinity (Kd, 57 nM) for blocking the DTX-occupied channel. The affinity of DTX-I likewise decreases by 8.4-fold (Kd, 139 nM) when BP is bound. These results identify two types of negatively coupled ligand-ligand interactions at distinct sites on the intracellular surface of maxi-KCa channels. Such antagonistic ligand interactions explain how the binding of BPTI or DTX-I to four potentially available sites on a tetrameric channel protein can exhibit apparent one-site kinetics. We hypothesize that negatively coupled binding equilibria and asymmetric changes in transition state energies for the interaction between DTX-I and BP originate from repulsive electrostatic interactions between positively charged peptide ligands on the channel surface. In contrast, there is no detectable binding interaction between DTX-I on the inside and tetraethylammonium or charybdotoxin on the outside of the maxi-KCa channel.  相似文献   

20.
1. The effects of imidazopyrazine derivative, SCA40, on the activity of single large conductance, Ca(2+)-activated K+ (BKCa) channels in inside-out and outside-out patches from bovine tracheal smooth muscle (BTSM) cells in culture have been compared with those of two established BKCa channel openers, NS 004 and NS 1619. 2. The presence of BKCa channels on inside-out patches of BTSM membranes was confirmed by the single channel conductance (240 pS), selectivity for K+, dependence of channel activity on [Ca2+]i, and sensitivity to the selective BKCa channel blocker, iberiotoxin. 3. NS 004 and ND 1619 (3-30 microM) induced concentration-related increases in open state probability of BKCa channels when applied to either inside-out or outside-out BTSM patches, thus confirming that these compounds are activators of the BKCa channel in this preparation. 4. SCA40 (0.1-10 microM) had no effect on the activity of BKCa channels when applied to either inside-out or outside-out patches which subsequently responded to the application of NS 004 (10-20 microM). 5. It is concluded that SCA40 does not have a direct effect on BKCa channel activity in BTSM patches and that the previously reported relaxant action of SCA40 on tracheal smooth muscle is unlikely to be mediated by this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号