首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
采用溶胶-凝胶法制备了LiNi_(0.5)Mn_(1.5)O_4正极材料,并利用Zn F2对其表面进行包覆改性。XRD、SEM和TEM测试表明,包覆处理不影响材料的晶体结构,2%(质量分数,以LiNi_(0.5)Mn_(1.5)O_4质量计,下同)的Zn F2在LiNi_(0.5)Mn_(1.5)O_4表面形成了约7 nm厚均匀包覆层。对未包覆的LiNi_(0.5)Mn_(1.5)O_4和1%、2%、3%的Zn F2包覆后的LiNi_(0.5)Mn_(1.5)O_4的电化学性能进行了考察,发现Zn F2包覆能够减弱电解液与LiNi_(0.5)Mn_(1.5)O_4正极材料之间的相互作用,稳定电极表面,提高材料的电化学性能。其中,2%Zn F2包覆样品表现出最佳的循环性能和倍率性能,0.2C电流倍率下循环200圈后,其放电比容量维持在109.0 m A·h/g,保持率为79.7%;5 C电流倍率下循环500圈后,放电比容量维持在94.2 m A·h/g,保持率为85.6%。  相似文献   

2.
《应用化工》2022,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.54.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

3.
《应用化工》2017,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.5~4.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

4.
采用高分子网络法制备锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料,利用XRD,SEM及电化学测试对其进行表征,研究了煅烧温度对LiNi_(0.5)Mn_(1.5)O_4的微观结构,形貌及其电化学性能的影响。研究结果表明,采用高分子网络法制备的LiNi_(0.5)Mn_(1.5)O_4材料颗粒小,粒度分布均匀,850度煅烧制得的LiNi_(0.5)Mn_(1.5)O_4电化学性能最好,大倍率3C放电循环20次比容量保持率为97.8%。  相似文献   

5.
以Zr(NO_3)_4·5H_2O和CH_3COOLi·2H2_O为原料,采用湿化学法,将Li_2ZrO_3包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2锂离子电池正极材料的表面,研究Li_2ZrO_3不同包覆比例对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2电化学性能的影响。SEM、TEM、EDS谱图分析表明,Li_2ZrO_3层均匀地包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2表面,其厚度约为8 nm。与纯相相比,1%(质量分数)Li_2ZrO_3包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2复合材料在1.0 C下首次放电比容量为184.7 mA·h·g~(-1)、100次循环之后放电比容量为169.5 mA·h·g~(-1),其容量保持率达到91.77%,表现出良好的循环稳定性。循环伏安(CV)和电化学阻抗(EIS)测试结果表明,Li_2ZrO_3包覆层抑制了正极材料与电解液之间的副反应,减小了材料在循环过程中的电荷转移阻抗,从而提高了材料的电化学性能。  相似文献   

6.
采用湿化学法,对高镍正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2进行不同比例的Co_3O_4表面包覆改性研究。利用XRD、SEM、TEM等测试手段对包覆前后样品的晶体结构和表面形貌进行了表征,并对各样品的电化学性能进行了测试。其中0.5%(wt)Co_3O_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2样品表现出最佳的首次充放电性能、循环性能和高温稳定性能。在55℃下循环180圈后,仍具有142.9 mA·h·g~(-1)的放电比容量,容量保持率为63.7%。同时借助电化学阻抗(EIS)测试对改性的原因进行了分析。  相似文献   

7.
采用工业级碳酸锂、三氧化二镍和电解二氧化锰为原料合成了镍锰酸锂(LiNi_(0.5)Mn_(1.5)O_4),研究了煅烧温度对材料性能的影响。采用X射线衍射、扫描电镜、激光粒度仪、放电循环曲线、循环伏安曲线和交流阻抗谱图表征了颗粒的结构、形貌、粒度分布和电化学性能。结果表明:制备的5 V镍锰酸锂均为尖晶石结构,但含有杂质相Li_xNi_(1-x)O、Li_xNi_yMnzO和Ni_xO。在煅烧温度为850℃、煅烧时间为12 h条件下制备的样品具有最佳的结构形貌和电化学性能,在放电倍率为1C、2C、5C条件下,LiNi_(0.5)Mn_(1.5)O_4对应的首次放电容量分别为120.8、118.1、111.2 m A·h/g,且循环200次仍具有优异的容量保持率。  相似文献   

8.
合成了功能化离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺盐(BMIMTFSI)作为高压锂离子电池电解液添加剂,用于抑制有机溶剂的氧化,以提高碳酸酯类电解液的耐高压性。分别采用充放电测试、电化学交流阻抗(EIS)、循环伏安法(CV)和扫描电子显微镜(SEM)等研究了LiNi_(0.5)Mn_(1.5)O_4/Li电池的电化学行为和LiNi_(0.5)Mn_(1.5)O_4材料表面形貌。结果表明,当在电解液中添加20%(体积分数) BMIMTFSI时,LiNi_(0.5)Mn_(1.5)O_4/Li电池在室温、0.2C下的最高放电比容量是126.81 mA·h·g~(-1),5C下的放电比容量为109.36 mA·h·g~(-1),比在1 mol·L~(-1)LiPF_6-EC/DMC电解液中的放电比容量提高了91.7%;且该电池在0.2C下循环50圈后的放电比容量保持率在95%左右,比用碳酸酯类电解液提高了近10%。SEM结果表明,在碳酸酯类电解液中加入BMIMTFSI后,LiNi_(0.5)Mn_(1.5)O_4电极表面附着了一层均匀且致密的固态电解质界面(SEI)膜。  相似文献   

9.
以5 V高电压LiNi_(0.5)Mn_(1.5)O_4为正极材料,高安全性Li_4Ti_5O_(12)为负极材料制备了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池,重点研究了正负极容量配比对电池电化学性能的影响。其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 m Ah·g~(-1),循环200次的容量保持率为88%;在2 C电流下,P/N=1.4的电池的最高放电比容量为135.2 m Ah·g~(-1),循环740次的容量保持率为91.1%。P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关。  相似文献   

10.
用均匀设计法优化了Co~(3+)、Li~+、F~-共掺杂的LiNi_(0.5)Mn_(1.5)O_4的组成和性能,并用XRD、SEM和恒电流充放电技术研究掺杂对材料结构、形貌和充放电性能的影响。结果表明,共掺杂和未掺杂LiNi_(0.5)Mn_(1.5)O_4均具有Fd3m尖晶石结构,掺杂离子以固溶体形式存在,Co~(3+)、Li~+和F~-共掺杂能同时提高材料的放电比容量和循环性能,其中Li_(1.02)Co_(0.07)Ni_(0.41)Mn_(1.5)O_(3.955)F_(0.045)的放电容量为145.4 m A·h/g,50个循环后容量保持率为97.1%。  相似文献   

11.
锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2具有比商业化正极材料——LiCoO2更低廉的成本、更低的毒性、更好的热稳定性,近年来受到广大科研工作者的关注。主要介绍了Li Ni1/3Co1/3Mn1/3O2正极材料的合成改性方法及其近年来在电化学性能方面所取得的成果和进展,并简要概括了该材料结构和发展趋势。不断提高Li Ni1/3Co1/3Mn1/3O2正极材料的振实密度以及电化学性能特别是其在高倍率充放电条件下的循环性能将成为相关科研工作者的研究重点。  相似文献   

12.
采用溶胶凝胶法,用柠檬酸作为鳌合剂,在不同的温度下合成制备均一的层状锂离子正极材料Li(Co0.2Ni0.4Mn0.4)O2。XRD、SEM实验数据表明,在较低温度700°C下便可制得层状Li1+x(Co0.2Ni0.4Mn0.4)O2,并具有均一的颗粒形貌,颗粒大小为300 nm左右。XPS显示其正极材料中的Co、Ni、Mn的化学价态分别为+3,+2,+4,均为它们的稳定价态。700°C下合成的材料在20mA/g,2.9~4.6 V电压范围内,首次放电比容量为210.2 mAh/g,50周后放电比容量仍高达185.3 mAh/g,容量损失为11.84%。  相似文献   

13.
低共熔混合锂盐合成LiNi_(0.8)Co_(0.2)O_2的研究   总被引:1,自引:0,他引:1  
常照荣  齐霞  吴锋  汤宏  孙东 《应用化工》2005,34(9):535-538
在空气气氛中,采用低共熔混合物L iNO3-L iOH为锂盐,制备出了锂离子电池正极材料L iN i0.8Co0.2O2。XRD分析表明:此工艺制得的正极材料具有完整的层状结构。电性能测试表明:在0.5 mA/cm2的充放电电流密度和2.7~4.2 V的电压范围内,L iN i0.8Co0.2O2首次放电比容量为145.2 mA.h/g,充放电库仑效率为83.8%;循环20次后,放电比容量为124.8 mA.h/g。该方法能制备出电化学性能良好的L iN i0.8Co0.2O2正极材料。  相似文献   

14.
利用氟代碳酸乙烯酯(FEC)和二氟草酸硼酸锂(LiDFOB)优良的成膜性、稳定性和耐高压性,研究了在1 mol/L LiPF6 FEC/碳酸丙烯酯(PC)/碳酸二甲酯(DMC)中加入LiDFOB和三(三甲基硅烷)硼酸酯(TMSB)对高电压材料LiNi0.5Mn1.5O4电化学性能的影响,利用循环伏安法和扫描电镜分析了两种电解液中电化学性能的差异. 结果表明,在FEC基电解液中加入LiDFOB和添加剂TMSB使电解液的分解电位提高至5.5 V(vs. Li/Li+)以上,对铝箔有良好的钝化作用. Li/LiNi0.5Mn1.5O4半电池在含LiDFOB和TMSB的电解液中的初始放电比容量达126.8 mA?h/g,库伦效率为99%,充放电200次后比容量仍为108.2 mA?h/g,容量保持率为85.3%. 而在不含LiDFOB和TMSB的电解液中,电池容量迅速衰减,85次充放电循环后容量保持率仅为60.7%.  相似文献   

15.
采用共沉淀法合成LiNi0.5Mn1.5O4正极材料并对其进行退火处理,研究退火温度对材料电化学性能的影响。结果表明,退火温度会导致LiNi0.5Mn1.5O4正极材料中Mn3+含量的变化,进而影响材料的倍率性能和循环性能。其中,625 ℃退火8 h所制备的样品表现出最好的电化学性能,其0.2 C倍率首次放电容量为130.8 mA·h/g;1 C倍率首次放电容量为126.5 mA·h/g,50次循环后,容量保持率高达100.8%。  相似文献   

16.
低共熔混合锂盐合成Co和Al共掺杂的LiNiO2   总被引:2,自引:0,他引:2  
在空气中,采用低共熔混合物L iNO3-L iOH为锂盐,制备了Co和A l共掺杂锂离子电池正极材料L iN i0.8Co0.15A l0.05O2。XRD分析表明,制得的正极材料具有完整的层状结构。电性能测试表明:在0.5 mA/cm2的放电电流密度和2.7—4.2 V的电压范围内,L iN i0.8Co0.15A l0.05O2首次放电比容量达147.6 mA.h/g,库仑效率达84.3%,第20次的放电比容量为133.8 mA.h/g。该合成新工艺,能制备出电化学性能良好的Co和A l共掺杂的L iN iO2正极材料。  相似文献   

17.
合成了功能化离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺盐(BMIMTFSI)作为高压锂离子电池电解液添加剂,用于抑制有机溶剂的氧化,以提高碳酸酯类电解液的耐高压性。分别采用充放电测试、电化学交流阻抗(EIS)、循环伏安法(CV)和扫描电子显微镜(SEM)等研究了LiNi0.5Mn1.5O4/Li电池的电化学行为和LiNi0.5Mn1.5O4材料表面形貌。结果表明,当在电解液中添加20% (体积分数)BMIMTFSI时,LiNi0.5Mn1.5O4/Li电池在室温、0.2C下的最高放电比容量是126.81 mA·h·g-1,5C下的放电比容量为109.36 mA·h·g-1,比在1 mol·L-1 LiPF6-EC/DMC电解液中的放电比容量提高了91.7%;且该电池在0.2C下循环50圈后的放电比容量保持率在95%左右,比用碳酸酯类电解液提高了近10%。SEM结果表明,在碳酸酯类电解液中加入BMIMTFSI后,LiNi0.5Mn1.5O4电极表面附着了一层均匀且致密的固态电解质界面(SEI)膜。  相似文献   

18.
以纳米TiO2和LiNO3为原料,尿素为燃料,燃烧法合成了锂离子电池负极材料Li4Ti5O12. 利用XRD、SEM和恒电流充放电、循环伏安和交流阻抗对其进行表征. 结果表明,预设炉温850℃,尿素与锂摩尔比1,焙烧8 h,制备得到平均粒径小于500 nm、粒度分布均匀的纯相尖晶石型结构Li4Ti5O12,并具有良好的电化学性能,具有1.5 V充放电平台,在0.1 C倍率下(1 C=170 mA·h/g),其首次充放电容量达到168 mA·h/g,经过100次循环后放电比容量仍有162 mA·h/g,容量保持率96.4%.  相似文献   

19.
以共沉淀法制备出的球形Ni0.5Co0.3Mn0.2(OH)2为前驱体,以碳酸锂为锂源,通过高温固相法合成了球形LiNi0.5Co0.3Mn0.2O2正极材料。通过热重分析(TGA/DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、粒度分布、以及电化学性能的测试考查了不同烧结温度对LiNi0.5Co0.3Mn0.2O2的物理性能及电化学性能的影响。结果表明,900℃下烧结得到的LiNi0.5Co0.3Mn0.2O2晶体结构完整、球形形貌规则、粒度分布均匀,并表现出了优异的电化学性能,0.2 C首次放电容量达到了166.7 mA.h/g;1 C首次放电容量为151.6 mA.h/g,20次循环后,容量保持率高达97.9%。  相似文献   

20.
以LiNO3和MnNO3为原料,溶胶凝胶法制备前驱体后,利用微波加热法,在750℃条件下保温20min,合成了Li1+xMn2Oy。利用XRD和FTIR分析手段,研究了锂掺杂量对材料结构的影响,利用恒电流充放电法,研究了材料的电化学性质。XRD和FTIR实验说明,适量的锂离子掺杂不改变材料的立方尖晶石结构;充放电实验显示,Li1.04Mn2O4.056是比较理想的电极材料,其首次放电比容量达到118.6mAh/g,5次循环后的容量损失率也仅为1.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号