首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
形变与热处理对CuCr合金中Cr相形貌及合金性能的影响   总被引:1,自引:1,他引:1  
研究了CuCr合金在不同形变与热处理制度下,组织中Cr相形貌、合金力学性能及导电性能的变化。结果表明:当变形量达到70%时,合金中的Cr粒子产生严重的变形,且有开裂现象。在随后高温热处理过程中开裂的Cr粒子发生熔断和球化。适当的形变与热处理能改善CuCr合金的力学性能与导电性能,并从微观组织方面对其原因进行了分析。  相似文献   

2.
研究了CuCr合金在不同形变和热处理制度下组织中Cr相形貌的变化。结果表明:当变形量达到70%时,合金中的Cr粒子产生严重的变形,且有开裂现象。在随后700~900℃保温2h退火后,开裂的Cr粒子发生熔断和球化。  相似文献   

3.
Cu-Cr-Zr原位复合材料的组织与性能   总被引:2,自引:0,他引:2  
采用真空熔铸与形变相结合的方法制备高强高导Cu-Cr-Zr原位复合材料,利用SEM和TEM分析材料在铸态及变形态的显微组织,研究不同变形量和中间热处理对Cu-Cr-Zr原位复合材料的抗拉强度和导电率的影响。结果表明:Cu-Cr-Zr合金经室温冷变形,Cr相由铸态树枝状转变为纤维状;中间热处理能够明显提高材料的导电率;采用500℃中间热处理并结合冷变形,能得到具有较好综合性能的Cu-Cr-Zr原位复合材料,其抗拉强度达到1119MPa,导电率(vsIACS)达到76%。  相似文献   

4.
高化伟 《热处理》2006,21(3):35-37
研究了不同冷变形量与热处理工艺对CuNiCr合金组织中Cr相形貌和力学性能的影响,结果表明,当变形量达到75%时,合金中的Cr相产生严重的变形,呈纤维状分布并部分Cr相有开裂现象。在随后高温热处理过程中开裂的Cr相发生溶断;该合金有显著的时效强化特性,强化相为Cr,当合金经75%变形后再经980℃固溶处理和500℃×4h时效处理可获得较高的硬度。  相似文献   

5.
CuCr25合金的机械变形及性能   总被引:6,自引:0,他引:6  
采用真空熔炼制备的CuCr25合金,在低应变速率下冷轧变形,研究了组织及性能变化。结果表明:CuCr25合金的电导率随着轧制变形程度的增大,开始略有上升,然后不断下降,经过一定量的大变形后,电导率又有上升;CuCr25合金的硬度不断上升,CuCr25合金硬度的上升主要是由于Cu基硬度的上升;经过大量的冷轧变形后,Cr相成纤维状和条带状,并有空洞生成;CuCr25合金在室温下具有超塑性。  相似文献   

6.
Cu-Cr触头合金制备技术的发展   总被引:20,自引:0,他引:20  
冼爱平  朱耀宵 《金属学报》2003,39(3):225-233
通过对近年来Cu-Cr合金制备技术的回顾,综述了Cu-Cr合金制备技术的进展。论述了该合金的化学成分及显微组织对电性能的影响,包括Cr含量的影响、第三组元的影响、合金中杂质的影响、Cr粒子宏观分布的影响、Cr粒子尺寸的影响、合金致密度的影响、热处理工艺的影响以及表面老炼处理的影响。介绍并分析了Cu-Cr合金的几种主要制备工艺,包括粉末烧结法、熔渗法、电弧熔炼法、自耗电极法以及最近发展起来的低偏析熔铸法;最后,对Cu-Cr合金进一步发展方向,如发展熔铸技术、Cr粒子细化、进一步减少Cr含量以及添加第三组元等进行了简要的讨论。  相似文献   

7.
W或C添加剂对优化CuCr25合金显微组织的作用   总被引:12,自引:3,他引:12  
采用真空感应熔炼法制备CuCr25(W),与Cr25(C)合金,研究不同合金元素W,C对CuCr触头微观组织的影响,研究结果表明,W和C能够显著细化Cr相晶粒,W对Cr相晶粒还有球化作用,同时对Cr相进行了强化,使合金整体性能得到提高,其中耐电压强度得到显著提高。  相似文献   

8.
研究了锆板在相同变形量下冷轧道次加工率对最终成品板材组织、性能及尺寸精度的影响。结果表明:冷轧锆合金板材显微组织为纤维状,随轧制道次加工率的增加,纤维组织越来越细。经过580℃/120 min退火后,锆合金板材纤维组织转化为等轴状晶粒;随冷轧道次加工率的增加,再结晶组织晶粒呈细化趋势,含Nb、Fe和Cr元素的Zr-Fe-Nb第二相粒子越易在晶界析出,有利于板材的力学性能的提升,而不利于耐腐蚀性能的提升。  相似文献   

9.
研究不同形变热处理条件下Cu-5.2Ni-1.2Si合金的性能与显微组织结构,对合金的力学性能和电学性能进行测量,并采用金相显微镜、透射电镜及电子衍射分析其显微组织。结果表明:时效前的冷变形可以加速时效析出过程,在时效初期尤为明显;在450℃时效时该合金的峰时效有3种强化机制:调幅组织强化、析出的第二相粒子强化和有序强化;析出的第二相粒子主要是Ni2Si粒子;采用铸锭—热轧—冷轧(变形量为60%)—时效工艺处理的合金可以得到硬度和导电率的最优组合。  相似文献   

10.
采用热等静压(HIP)固相烧结法制备了近乎完全致密、低氧、氮含量的CuCr合金材料,研究了在不同烧结温度下制备CuCr合金的Cr相颗粒度、电击穿场强及击穿区域,给出了CuCr合金Cr相粒子半径与击穿场强的关系式。结果表明:随着HIP烧结温度的上升,CuCr触头材料的Cr相颗粒度也将逐渐增大,导致真空电击穿场强减小,与此同时真空电击穿烧蚀面积增大,烧蚀坑深度逐步加深。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号