首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Organochlorine pesticides by LC-MS   总被引:1,自引:0,他引:1  
Contamination of water resources by organochlorine pesticides (OCPs) continues to receive widespread attention because of the increasing concern regarding their high persistence and bioaccumulation. These organic pollutants are not amenable by liquid chromatography (LC) coupled to atmospheric pressure ionization-mass spectrometry, which represents the method of choice for the characterization of pesticide residues in water. Gas chromatography-mass spectrometry provides excellent response for OCPs, but it falls short when complex, multiresidue analyses are required. As recently demonstrated, an efficient EI-based LC-MS interface can generate very good spectra for an extremely wide range of small-medium molecular weight molecules of different polarity and can represent a valid tool in solving the analytical challenge of analyzing OCPs by LC-MS. Based on this assumption, we present a new approach for the determination of 12 OCPs in water samples. The method requires a solid-phase extraction preconcentration step followed by nanoscale liquid chromatography coupled to a direct-electron ionization direct interface (Direct-EI). Direct-EI is a miniaturized interface for efficiently coupling a liquid chromatograph with an EI mass spectrometer. The capability to acquire high-quality EI spectra in a wide range of concentrations, and to operate in selected ion monitoring mode during analyses, allowed a precise quantification of the OCPs. Without sample injection enrichment, limits of detection of the method span from 0.044 to 0.33 microg/L, corresponding to an instrumental detection limit of 120-850 pg. In addition, a careful evaluation of the matrix effect showed that the response of the Direct-EI interface was never affected by sample interferences. From our knowledge, the proposed method represents the first application of LC-MS in the analysis of organochlorine pesticides.  相似文献   

2.
A multiple ionization mass spectrometry strategy is presented based on the analysis of human serum extracts. Chromatographic separation was interfaced inline with the atmospheric pressure ionization techniques electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (+) and negative (-) ionization modes. Furthermore, surface-based matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on silicon (DIOS) mass spectrometry were also integrated with the separation through fraction collection and offline mass spectrometry. Processing of raw data using the XCMS software resulted in time-aligned ion features, which are defined as a unique m/z at a unique retention time. The ion feature lists obtained through LC-MS with ESI and APCI interfaces in both +/- ionization modes were compared, and unique ion tables were generated. Nonredundant, unique ion features, were defined as mass numbers for which no mass numbers corresponding to [M + H](+), [M - H](-), or [M + Na](+) were observed in the other ionization methods at the same retention time. Analysis of the extracted serum using ESI for both (+) and (-) ions resulted in >90% additional unique ions being detected in the (-) ESI mode. Complementing the ESI analysis with APCI resulted in an additional approximately 20% increase in unique ions. Finally, ESI/APCI ionization was combined with fraction collection and offline-MALDI and DIOS mass spectrometry. The parts of the total ion current chromatograms in the LC-MS acquired data corresponding to collected fractions were summed, and m/z lists were compiled and compared to the m/z lists obtained from the DIOS/MALDI spectra. It was observed that, for each fraction, DIOS accounted for approximately 50% of the unique ions detected. These results suggest that true global metabolomics will require multiple ionization technologies to address the inherent metabolite diversity and therefore the complexity in and of metabolomics studies.  相似文献   

3.
Hanton SD  Liu XM 《Analytical chemistry》2000,72(19):4550-4554
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important technique to characterize the average molecular weights, oligomer repeat units, and end groups of polymer materials. Although MALDI methods have been developed for a broad variety of different synthetic polymers, MALDI continues to struggle with polymer samples having broad polydispersity (PD). We have combined MALDI and gel permeation chromatography (GPC) analyses for broad PD polymer samples with the use of a liquid chromatography (LC) interface. The LC interface uses heated sheath gas and a capillary nozzle to remove most of the mobile phase and deposit the GPC eluants on the precoated matrix on a moving MALDI plate. Our experiments demonstrate that the combination of GPC-LC interface-MALDI can aid in the characterization of broad PD samples, the verification of the presence of low-intensity, high-mass oligomers, and the detection of minor series in polymer samples.  相似文献   

4.
In this work, we describe the performance of an atmospheric pressure photoionization (APPI) source for sampling liquid flows. The results presented here primarily focus on the mechanism of direct photoionization (PI), as compared to the dopant mechanism of PI. Measured detection limits for direct APPI were comparable to atmospheric pressure chemical ionization (APCI; e.g., 1 pg for reserpine). The ion signal is linear up to 10 ng injected quantity, with a useful dynamic range exceeding 100 ng. Evidence is presented indicating that APPI achieves significantly better sensitivity than APCI at flow rates below 200 microL/min, making it a useful source for capillary liquid chromatography and capillary electrophoresis. Results are presented indicating that APPI is less susceptible to ion suppression and salt buffer effects than APCI and electrospray ionization (ESI). The principal benefit of APPI, as compared to other ionization sources, is in efficiently ionizing broad classes of nonpolar compounds. Thus, APPI is an important complement to ESI and APCI by expanding the range and classes of compounds that can be analyzed. In this paper, we also discuss the role of direct APPI vs PI-induced APCI using dopants.  相似文献   

5.
A method based on high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (APCI LC-MS) was developed for the quantification of the bioavailability of retinyl palmitate and beta-carotene and the bioconversion of beta-carotene to retinol in humans. Following oral administration of [8,9,10,11,12,13,14,15,19,20-13C10]-retinyl palmitate and [12,13,14,15,20,12',13',14',15',20'-13C10]-beta-carotene at physiological doses to children between 8 and 11 years of age, blood samples were drawn and serum was prepared. Retinol and beta-carotene were extracted from 0.2- and 1.0-mL serum samples, respectively, and analyzed using reversed-phase HPLC with a C30 column interfaced to an APCI mass spectrometer. Unlike other LC-MS assays for carotenoids, no additional purification steps were necessary, nor was any derivatization of retinol or beta-carotene required. APCI LC-MS showed a linear detector response for beta-carotene over 4 orders of magnitude. Using selected ion monitoring to record the elution profile of protonated circulating beta-carotene at m/z 537 and [13C10]-beta-carotene at m/z 547, the limit of detection was determined to be 0.5 pmol injected on-column. To assess the ratio of labeled to unlabeled retinol, selected ion monitoring was carried out at m/z 269, 274, and 279. These abundant fragment ions corresponded to the loss of water from the protonated molecule of circulating retinol, [13C5]-retinol (metabolically formed from orally administered [13C10]-beta-carotene), and [13C10]-retinol (formed by hydrolysis of [13C10]-retinyl palmitate). The ratios of labeled to unlabeled retinol and the ratio of labeled to unlabeled beta-carotene were calculated. Combined with standard HPLC measurement of beta-carotene and retinol concentration and a mathematical model, these results showed that this simple LC-MS method can be used to quantify beta-carotene bioavailability and its bioconversion to retinol at physiologically relevant doses.  相似文献   

6.
Matrix effects are a great challenge for the quantitative analysis of environmental samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Signal suppression or enhancement can compromise the accuracy of analytical results. While matrix effects have been relatively well studied for applications of LC-MS/MS instrumentation with electrospray ionization, there have been relatively few studies to evaluate matrix effects when using atmospheric pressure chemical ionization (APCI) as the ion source. In this study, we determined the effects of sample matrix on the analysis of six neutral pharmaceuticals (i.e., caffeine, cotinine, carbamazepine and its major metabolite, carbamazepine-10,11-dihydrodiol, trimethoprim, and fluoxetine) in samples of municipal wastewater using LC-APCI-MS/MS and evaluated whether isotope-labeled internal standards can be used to compensate for matrix effects. The matrix effects were measured using postextraction spikes and postcolumn direct infusion, respectively. The results showed that the matrix in the extracts prepared from municipal wastewater enhanced the signals for four of the six analytes when using an APCI source. Without correction for signal enhancement, apparent recoveries of the analytes from wastewater samples were overestimated to levels as high as 178% of the spiked amount. Isotope-labeled compounds corrected for these overestimates that occurred as a result of interferences from the sample matrix.  相似文献   

7.
High-performance liquid chromatography (LC) coupled to mass spectrometry (MS) is increasingly being used for urinary metabonomic studies. Most studies utilize reversed-phase separation techniques, which are not suited to retaining highly polar analytes. Metabonomic studies should encompass a representative "fingerprint" that contains the largest amount of information possible. In this work, we have analyzed human urine samples with LC-MS, comparing traditional reversed-phase separation with hydrophilic interaction chromatography (HILIC), using both positive and negative electrospray ionization modes. The resulting data were analyzed using principal components analysis and partial least-squares-discriminant analysis. Discriminant models were developed for the response variables gender, diurnal variation, and age and were evaluated using external test sets to classify their predictive ability. The developed models using both positive and negative ionization mode data for reversed-phase and HILIC separations were very comparable, indicating that HILIC is a suitable method for increasing the fingerprint coverage for LC-MS metabonomic studies.  相似文献   

8.
A fully automated high-throughput liquid-liquid extraction (LLE) methodology has been developed for preparation of biological samples using a 96-well LLE plate and a 96-channel robotic liquid handling workstation. The 96-well LLE plate is made of a 96-well filter plate filled with inert diatomaceous earth particles, allowing continuous and efficient extraction of analytes between the aqueous biological sample and the organic extraction solvent. Two carboxylic acid-based protease inhibitor compounds with high and low levels of plasma protein binding were chosen for the development and application of the automated methodology. The LLE extracts of the plasma samples of the two compounds were analyzed by high-performance liquid chromatography with electrospray (ESI) tandem mass spectrometry (LC-MS/MS). The LC-MS/MS method was developed using a rapid gradient LC separation, followed by sample introduction through an ionspray interface in the negative ion mode and tandem mass spectrometric detection with selected reaction monitoring. In the optimized LLE method, a formate buffer solution was first loaded into a 96-well filter plate packed with inert diatomaceous earth material. Then crude plasma samples and a water-immiscible organic solvent, methyl ethyl ketone, were sequentially added to the LLE plate so that LLE would occur in the interface between the two liquid phases on the surface of individual particles in each well. The organic eluate containing extracted analytes was evaporated and reconstituted for LC-MS/MS analysis. This fully automated LLE methodology avoids several disjointed steps involved in a manual or semiautomated LLE method, leading to significantly reduced sample preparation time, increased sample throughput, and clean sample extracts for improved ESI-MS/MS detection. The automated LLE methodology is universal and can be employed for sample preparation of other biological fluids. The complete bioanalytical method, based on the automated LLE and fast gradient LC-MS/MS, was validated and successfully applied to the quantitative analysis of protease inhibitors in rat plasma.  相似文献   

9.
Ryu J  Chang T 《Analytical chemistry》2005,77(19):6347-6352
Temperature programming has been used increasingly in liquid chromatography in recent years. In particular, temperature gradient elution has shown great potential in the analysis of complex polymers. In this study, the polymer retention behavior in temperature gradient interaction chromatography is investigated based on thermodynamic consideration of the retention factor. The polymer retention predicted by the model calculation is in good agreement with the experimental results, and the model allows devising a temperature program for designed retention behaviors such as a linear dependence of retention volume on log(molecular weight) of polymers. In addition, the migration behavior of polymeric solute along the separation column can be simulated, which shows strong molecular weight dependence. The migration behavior is also confirmed experimentally by employing different length columns or delayed injection.  相似文献   

10.
Xia YQ  Wu ST  Jemal M 《Analytical chemistry》2008,80(18):7137-7143
As a continuation of the evaluation of the utility of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in quantitative bioanalysis, we have developed a sensitive and selective method for the quantification of a peptide drug candidate in rat plasma using FAIMS coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). The LC-FAIMS-MS/MS method provided significant advantage over the corresponding LC-MS/MS method by reducing chemical/endogenous background noise associated with plasma matrix, thereby improving the sensitivity via increasing the signal-to-noise ratio. Linearity was established within 1-1000 nM in rat plasma, and the overall method accuracy and precision were good meeting the generally adopted acceptance criteria for a bioanalytical method. In a related investigation, we demonstrated the global selectivity of FAIMS from plasma endogenous components as a function of the compensation voltage (CV) across molecular masses that encompass small-molecule drugs. This work demonstrates that FAIMS coupled with LC-MS/MS can be highly advantageous in quantitative bioanalysis.  相似文献   

11.
A new method for sensitive, specific, and direct determination of palytoxin is proposed herein. It is based on combination of reversed-phase liquid chromatography with mass spectrometry (LC-MS). The new method was set up on a turbo ion spray-triple quadrupole MS instrument operating in selected ion monitoring (SIM) and multiple reaction monitoring (MRM) acquisition modes (positive ions). The minimum detection levels for matrix-free toxin on column were thus estimated from the data to be 200 and 125 pg in SIM and MRM modes, respectively. Spiking experiments before and after extraction allowed us to assess limits of detection and quantitation for palytoxin in matrix, accuracy, and intraday and interday reproducibility of the method. The developed method was decisive for the analysis of a plankton sample collected along Genoa coasts in July 2005 when respiratory illness in people exposed to marine aerosols occurred. It is suggested that putative palytoxin was the causative agent responsible for patients' symptoms and demonstrated for the first time the presence of such a toxin in Italian waters.  相似文献   

12.
Owing to possible adulteration and health concerns, it is important to discriminate between natural and synthetic food ingredients. A new method for compound-specific isotope analysis (CSIA) by coupling high-temperature reversed-phase liquid chromatography to isotope ratio mass spectrometry (HT-RPLC/IRMS) was developed for discrimination of natural and synthetic caffeine contained in all types of drinks. The analytical parameters such as stationary phase, column inner diameter, and column temperature were optimized for the separation of caffeine directly from drinks (without extraction). On the basis of the carbon isotope analysis of 42 natural caffeine samples including coffee beans, tea leaves, guaraná powder, and maté leaves, and 20 synthetic caffeine samples from different sources by high-temperature reversed-phase liquid chromatography coupled to isotope ratio mass spectrometry, it is concluded that there are two distinguishable groups of caffeine δ(13)C-values: one between -25 and -32‰ for natural caffeine, and the other between -33 and -38‰ for synthetic caffeine. Isotope analysis by HT-RPLC/IRMS has been applied to identify the caffeine source in 38 drinks. Four mislabeled products were detected due to added but nonlabeled synthetic caffeine with δ(13)C-values lower than -33‰. This work is the first application of HT-RPLC/IRMS to real-world food samples, which showed several advantages: simple sample preparation (only dilution), high throughput, long-term column stability, and high precision of δ(13)C-value. Thus, HT-RPLC/IRMS can be a very promising tool in stable isotope analysis of nonvolatile compounds.  相似文献   

13.
The identification of n-decyl alpha(1-->6)isomaltoside as a main component of technical alkyl polyglucoside (APG) mixtures by the parallel use of liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy is described. Following enrichment on a styrene-divinylbenzene-based solid-phase extraction material, unknown components were separated by reversed-phase liquid chromatography (LC). Chemical characterization was achieved by both mass spectrometry and NMR spectroscopy. It is demonstrated that the combination of LC-MS with various NMR techniques is very suitable for stereochemical assignment of unknown components in technical APG mixtures.  相似文献   

14.
The ability to estimate low-dose human exposure to commonly used pesticides often is requested in epidemiologic studies. Therefore, fast and robust methods are necessary that can measure many analytes in the same sample. We have developed a method for high-throughput analysis of 19 markers of commonly used pesticides in human urine. The analytes were seven specific metabolites of organophosphorus pesticides, five metabolites of synthetic pyrethroids, six herbicides or their metabolites, and one insect repellant. Human urine (2 mL) was spiked with stable isotopically labeled analogues of the analytes, enzymatically hydrolyzed, extracted using solid-phase extraction, concentrated, and analyzed using high-performance liquid chromatography-tandem mass spectrometry. The sample was divided into two portions and analyzed on two different mass spectrometers, one using atmospheric pressure chemical ionization (APCI) and the other using turbo ion spray atmospheric pressure ionization (TIS). All analytes except the pyrethroid metabolites were analyzed using APCI. The detection limits for all analytes ranged from 0.1 to 1.5 ng/mL of urine, with the majority (17) below 0.5 ng/mL. The analytical precision for the different analytes, estimated as both the within-day and between-day variation, was 3-14 and 4-19%, respectively. The extraction recoveries of the analytes ranged from 68 to 114%. The throughput, including calibration standards and quality control samples, is approximately 50 samples a day. However, the analysis time with the TIS application is much shorter, and if only pyrethroid metabolite data are of interest, the throughput can be increased to 100-150 samples/day.  相似文献   

15.
A combination of liquid matrix and graphite particulates (2 μm) has been proposed as a method suitable for the laser desorption/ionization mass spectrometry of peptides and proteins (Sunner, J.; et al. Anal. Chem. 1995, 67, 4335). Here we demonstrate the potential of this approach as a straightforward, and very general, method of achieving the ultraviolet laser desorption/ionization of a broad range of intermediate weight analytes. The desorption/ionization mechanism, the influence of preparative procedures, and the breadth of application of this methodology have been investigated. A simple and robust preparative procedure is presented for the analysis of proteins, oligosaccharides, and synthetic polymers. Detection sensitivities are in the femtomole region for lower molecular weight peptides and oligosaccharides. The graphite acts as an energy transfer medium by absorbing the UV radiation, leading to thermal desorption of the liquid matrix and analyte. The liquid matrix was observed to fulfill several important roles. In the case of peptides and proteins, which preferentially form protonated molecular ions, it acts as a protonating agent. It also enhances the signal intensities of cationized species (e.g., polysaccharides and polar polymers) by assisting their desorption. An excess of liquid matrix serves to cool the analyte during the desorption step and minimize decomposition. The presence of liquid matrices increases the sample lifetime at a particular desorption spot, minimizing the time-consuming search for "hot spots". The addition of cationizing salts has been shown to improve the quality of mass spectra obtained for polar polymers and extend the range of materials that can be investigated to include apolar synthetic polymers.  相似文献   

16.
Liquid chromatography tandem mass spectrometry (LC-MS/MS) and liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) are powerful and complementary techniques that can independently cover the majority of the challenges related with pesticide residue food control. The sequential combination of both systems benefits from their complementary advantages and assists to increase the performance and to simplify routine large scale pesticide multiresidue methods. The proposed approach consists of three stages: (1) automated pesticide screening by LC-TOFMS; (2) identification by LC-TOFMS accurate mass measurements; and (3) confirmation and quantitation by LC-MS/MS. We have developed a fast comprehensive (identification/confirmation + quantitation) automated screening method for 100 target pesticides in crops. In the first stage, a set of data including m/z accurate mass windows (within 20 mDa width) and retention time is obtained (using a standard solution containing all the targeted pesticides) in order to build the automated screening procedure, which is created automatically by assigning retention time and the m/z mass window for each target pesticide. Samples are then analyzed, and the method enables the screening and preliminary identification of the species first by retention time and m/z mass window, followed by subsequent identification (only if positive results) by LC-TOFMS accurate mass measurements. After that, final confirmation of the positive findings using two MRM transitions and accurate quantitation is performed by LC-MS/MS using a hybrid triple quadrupole linear ion trap (QqLIT) mass spectrometer. In addition, the use of this QqLIT instrument also offers additional advantageous scanning modes (enhanced product ion and MS3 modes) for confirmatory purposes in compounds with poor fragmentation. Examples of applications to real samples show the potential of the proposed approach, including the detection of nonselected "a priori" compounds as a typical case of retrospective evaluation of banned or misused substances.  相似文献   

17.
以含液晶基元的单体 2 ,5-二 (对异烷氧基苯甲酰氧基 ) -对苯二酚和不同结构的脂族二酰氯 ,采用低温溶液缩聚的方法 ,合成了一系列新的液晶基元垂直于分子主链的 SC相串型液晶高分子。单体的结构通过元素分析、IR、1H-NMR和 MS等方法确证。聚合物通过 GPC、DSC、TG、WAXD和偏光显微镜等方法测试表征。研究发现 ,所有的聚合物加热至各自的熔点以上都能形成液晶态 ,在液晶态可以观察到破焦锥织构 ,通过变温 X射线衍射证明它们为 SC相。所有聚合物的熔点和液晶态的清亮点随分子中末端烷氧基增大和柔性间隔段长度增加逐渐降低 ,液晶态温度范围变窄。  相似文献   

18.
Substantial improvements in a multidimensional dynamic surface tension detector (DSTD) are presented. Rapid, online calibration and measurement of the dynamic surface tension for high-performance liquid chromatography separations is achieved. Dynamic surface tension is determined by measuring the differential pressure across the liquid-air interface of repeatedly growing and detaching drops. Continuous surface tension measurement throughout the entire drop growth (50 ms to 2 s) is achieved, for each eluting drop, providing insight into the kinetic behavior of molecular orientation processes at the liquid-air interface. Three-dimensional data are obtained, with surface tension first converted to surface pressure, which is plotted as a function of elution time axis versus drop time axis. Two key innovations will be reported. First, a novel calibration procedure is described and implemented. Differential pressure signals from three drops (mobile phase, standard in mobile phase, and analyte in mobile phase) are utilized to make the dynamic surface tension measurement, thereby eliminating the need for optical imaging, and viscosity and hydrostatic pressure corrections, as required by other methods. Only pressure signals from one mobile-phase drop and one standard drop pressure signal are required, while the analyte drop pressure signal is measured along the chromatographic time axis. Second, corrections for drop elongation are not required, because the drops are precisely detached by an air burst actuation method in a regime were the surface tension forces significantly dominate gravitational forces. Drops that would fall with a volume of approximately 10 microL due to gravity are precisely and repeatedly detached earlier at a volume of 2 microL. The sensitivity and unique selectivity of the DSTD opens up new possibilities in the analysis of small molecular weight polymers of varying degrees of surface activity, as illustrated for the size-exclusion chromatography analyses of complex poly(ethylene glycol) (PEG) samples. Using partial least squares for data analysis, polydispersity of complex PEG samples is determined at a relative precision of approximately 1%.  相似文献   

19.
Tso J  Aga DS 《Analytical chemistry》2011,83(1):269-277
The increasing demand to monitor multiple classes of analytes has been mirrored by increased analytical cost and decreased throughput. For instance, the analyses of estrogens and antibiotics by liquid chromatography with tandem mass spectrometry (LC-MS/MS) are typically performed in two separate methods because estrogen analysis requires electrospray with negative ionization, while sulfonamide and tetracycline antibiotics are analyzed under positive ionization. Therefore, we investigated the use of wrong-way-round (WWR) ionization to demonstrate that sulfonamides and tetracyclines can be analyzed at a high pH (10.4), allowing simultaneous analysis with free and conjugated estrogens. An LC-MS/MS method was developed for 28 compounds by polarity switching, based on WWR ionization brought about by the ability of ammonium ions to protonate basic compounds in the gas phase even at high pH. Mass spectral data suggest that gas-phase chemical ionization induced by ammonium ions to form adducts [M + NH(4)](+) occurred, with the subsequent dissociation to the molecular ion [M + H](+). Almost all compounds have an increased signal-to-noise (S/N) ratio of [M + H](+) for sulfonamides and tetracyclines when ionized in basic versus acidic mobile phases by direct injection (no column), indicating that detection limits were not compromised. This study demonstrates a successful application of WWR ionization for the simultaneous analysis of multiple classes of compounds in a single LC-MS/MS analysis.  相似文献   

20.
A theoretical background is provided for the methods of the analysis and topological separation of complex macrocyclic polymers by means of size exclusion chromatography (SEC), liquid adsorption chromatography, and liquid chromatography at the critical condition. We focus on a particular problem of the separation of theta-shaped polymers from its three-armed star analogues. Based on the theory, we simulate chromatograms for model mixtures of polydisperse theta- and star-polymers and analyze conditions for good separation of these polymers by topology. A theory is compared with the behavior of star- and theta-shaped poly(THF)s in size exclusion and interactive chromatography, and a good qualitative agreement between theory and experiment is observed. In particular, it is shown that in both SEC and interactive chromatography theta-polymers elute after the corresponding stars of the same molar mass. According to theory and experiment, chromatography under the critical and near-critical interaction conditions is especially promising for the separation of polydisperse macrocyclic polymers from their linear or branched analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号