共查询到19条相似文献,搜索用时 66 毫秒
1.
椭球径向基函数神经网络(EBF)是在径向基函数(RBF)映射理论基础上的改进。在保留RBF3层网络结构基础上,EBF采用了最大期望算法来估计特征空间的混合密度分布参数,用椭球体集合来分解混合密度分布,从而构造了神经网络的中间层基函数的状态。由于遥感数据在特征空间中通常表现为混合密度分布,EBF模型能够充分利用期望最大(EM)算法获得的最大似然参数估计得到更合理的特征空间的密度分解模型,从而使得EBF模型能够保留RBF非线性复杂映射能力的同时,获得更合理的分类结果。为此提出了基于EBF的遥感分类方法,试验结果表明EBF方法比RBF方法网络连接更简单、分类精度更高。 相似文献
2.
与传统统计方法的分类器相比较,人工神经网络(ANN)方法应用于遥感影像分类,不需预先假设样本空间的参数化统计分布,具有复杂的映射能力。大多数ANN分类器采用误差反向传播(BP)学习算法的多层感知器模型(BPNN),其主要缺陷是学习速度缓慢、容易陷入局部极小而导致难以收敛等。基于径向基函数(RBF)映射理论的神经网络模型融合了参数化统计分布模型和非参经线性感知器映射模型的优点,在实现快速学习的同时, 相似文献
3.
提出一种训练椭球基函数神经网络(EBFNN)的混合学习算法.此算法首先使用期望最大化算法初始化EBFNN中椭球基函数节点的参数,而网络的连接权重和偏差项则用线性最小二乘方法进行初始化.然后用梯度下降法对EBFNN中所有参数同时进行优化.与其他3个相关的模型相比,用混合学习方法训练的梯度下降椭球基函数神经网络(GDEBFNN)能够取得更优的分类性能.此外,与支持向量机对比表明,GDEBFNN取得与之接近的泛化能力.与基于Adaboost的决策树模型比较表明,GDEBFNN可以取得更优的泛化性能. 相似文献
4.
5.
基于广义径向基函数的神经网络分类预测 总被引:1,自引:0,他引:1
径向基函数网络是神经网络中一种广泛使用的设计方法.它把神经网络的设计看作是一个高维空间的曲线逼近问题.相对于其他的神经网络方法.径向基函数神经网络除了具有一般神经网络的优点,如多维非线性映射能力、泛化能力、并行信息处理能力等,还具有很强的聚类分析能力,学习算法简单方便等优点.针对一个实际分类问题,利用广义径向基函数网络的思想训练一个网络并实现对测试数据集的分类预测.本算法采用k-均值聚类算法训练广义径向基函数网络中心,使用奇异值分解计算输出层权值.对该网络的实现细节及待改进之处进行简要分析.实验表明广义径向基函数神经网络的思想具有很强的聚类分析能力,学习算法简单方便等优点. 相似文献
6.
遥感信息是地球表层信息的综合反映,由于地球表层系统的复杂性和开放性,地表信息是多维的、无限的、遥感信息传递过程中的局限性以及遥感信息之间的复杂相关性,决定了遥感信息其结果的不确定性和多解性,遥感信息具有一定的统计特性,同时又具有高度的随机性和复杂性,在特征空间中往往表现为混合密度分布,针对遥感信息这种统计分布的复杂性,提出了有限混合密度的期望最大(EM)分解模型,该模型假设总体分布可分解为有限个参数化的密度分布,通过EM迭代计算可估计出各密度分布的最大似然参数集;将有限混合EM聚类算法应用于遥感影像的聚类分析中,并与传统统计聚类方法进行了比较,比较结果表明,其对复杂地物的区分具有优势,另外在融合专家知识、初始化等方面具有扩展能力。 相似文献
7.
对径向基函数神经网络在疵点分类中的应用进行了研究;提出了一种应用于模式识别的RBF训练算法,提取织物疵点的特征参数如均值、方差和熵,再利用神经网络进行疵点类别的判别,精确度高达百分之九十多,准确地反映了每一类瑕疵特征的真实分布情况;然后分析了另一种神经网络--学习矢量量化网络LVQ对疵点分类的效果,将它们的训练速度和分类精度进行了比较;实验结果表明,采用RBF神经网络比LVQ神经网络的分类速度更快、精度更高,更有效地被应用于织物疵点分类中。 相似文献
8.
一种新的径向基概率神经网络模型(Ⅰ):基本理论 总被引:2,自引:0,他引:2
黄德双 《计算机研究与发展》1998,(2)
文中在径向基函数网络(RBFN)和概率神经网络(PNN)的基础上,提出了一种径向基概率神经网络(RBPNN)模型,这种网络保留了前两种网络模型的优点,既可以减少网络连接权值的训练时间,又能减少网络隐单元的数目,同时,网络用于测试的时间也较RBFN明显地下降. 相似文献
9.
提出了一种新的神经网络RBF Fuzzy-Artmap网络,该网络由径向基(RBF)神经网络和Fuzzy-Artmap网络构成.因为在Fuzzy-Artmap网络结构中使用了RBF网络的学习方法,因此克服了RBF网络和Fuzzy-Artmap网络的缺点,具有在线增量学习的功能,且不受样本输入顺序的影响.将新型网络应用到遥感图像分类中,得到了满意的分类精度,是一种有效的图像分类方法. 相似文献
10.
基于径向基神经网络的浮游植物分类系统 总被引:1,自引:0,他引:1
应用模糊聚类和小波变换提取浮游植物活体的特征光谱,并以此为输入向量,引入径向基函数网络对浮游植物的光谱进行分类识别,建立了适用于光谱识别的径向基函数神经网络系统.结果表明,该方法较传统的统计方法更方便,识别准确率更高. 相似文献
11.
鉴于BP网络训练时间过长,且易于陷入局部最优解,本文采用RBF网络来实现元音字母的语音识别。RBF网络的构造通过一种动态自适应聚类算法来完成,使得RBF网络具有在线学习能力。示例计算结果表明,这种RBF网络具有比BP网络和贝叶斯分类器更好的分类精度。 相似文献
12.
提出了一种基于改进的混合粒子群优化(particle swarm optimization,PSO)算法的高斯混合模型地形分类方法。高斯混合模型的求解通常是使用期望最大化算法(expectation maximization,EM),然而EM算法易陷入局部最优,收敛速度不稳定且对初值敏感。因此引入混合PSO算法,并对其进行了一系列改进。实验结果表明:改进后的算法较其它优化算法提高了全局搜索能力和收敛速度,利用该算法求解高斯混合模型可以提高参数估计的精度,并且在户外场景图像的地形分类实验中所提出的地形分类方法也表现优良。 相似文献
13.
FRBF: A Fuzzy Radial Basis Function Network 总被引:1,自引:0,他引:1
The FRBF network is designed by integrating the principles of a radial basis function network and the fuzzy c-means algorithm.
The architecture of the network is suitably modified at the hidden layer to realise a novel neural implementation of the fuzzy
clustering algorithm. Fuzzy set-theoretic concepts are incorporated at the input, output and hidden layers, enabling the model
to handle both linguistic and numeric inputs, and providing a soft output decision. The effectiveness of the model is demonstrated
on a speech recognition problem. 相似文献
14.
基于高斯混合模型的遥感影像连续型朴素贝叶斯网络分类器 总被引:1,自引:0,他引:1
提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的分布用高斯混合模型来模拟,用改进EM算法自动获取高斯混合模型的参数;高斯混合模型整体作为一个子节点嵌入朴素贝叶斯网络中,将其输出作为节点(特征)的中间类后验概率,在朴素贝叶斯网络的框架下进行融合获得最终的类后验概率。对多光谱和高光谱数据的分类实验结果表明,该方法较传统贝叶斯分类器分类效果要好,且有较强的鲁棒性。 相似文献
15.
A probabilistic radial basis function network (P-RBFN)is presented for face recognition. Each P-RBFN isonly responsible for the recognition of one class. To a given face pattern to be identified, the probability of the givenface pattern belonging to every class is calculated by corresponding P-RBFN and the final recognition result is the fu-sion of all P-RBFN‘s outputs. This method combines the statistic theory and neural network technology and can easi-ly be applied in distributed mode. Experiments are implemented on ORL, and an error rate 4% has been got. Com-parison between P-RBFN and other methodologies such as Eigenface, SOM CN and HMM has been done and the advantages of the P-RBFN are demonstrated. 相似文献
16.
17.
遥感卫星图像几何粗校正的数据并行方法研究 总被引:1,自引:0,他引:1
主要研究星上遥感图像的实时几何粗校正问题.卫星遥感图像现在一般都大到上万个像素行和列,采用传统的单个处理器的串行方式在星上进行实时处理是难以满足应用要求的.提出了一种在一维PE阵列的SIMD计算机上采用基于处理元阵列平移的数据并行校正方法,并根据NASA的LANDSAT-1卫星的有关的参数,对该方法进行了详细讨论,给出了具体的实现方法.通过对复杂性和加速比的讨论,表明该方法在性能上比采用单个处理器的串行方法提高了N倍. 相似文献
18.
19.
Stergios Papadimitriou Seferina Mavroudi Liviu Vladutu Anastasios Bezerianos 《Applied Intelligence》2002,16(3):223-234
The application of the Radial Basis Function neural networks in domains involving prediction and classification of symbolic data requires a reconsideration and a careful definition of the concept of distance between patterns. This distance in addition to providing information about the proximity of patterns should also obey some mathematical criteria in order to be applicable. Traditional distances are inadequate to access the differences between symbolic patterns. This work proposes the utilization of a statistically extracted distance measure for Generalized Radial Basis Function (GRBF) networks. The main properties of these networks are retained in the new metric space. Especially, their regularization potential can be realized with this type of distance. However, the examples of the training set for applications involving symbolic patterns are not all of the same importance and reliability. Therefore, the construction of effective decision boundaries should consider the numerous exceptions to the general motifs of classification that are frequently encountered in data mining applications. The paper supports that heuristic Instance Based Learning (IBL) training approaches can uncover information within the uneven structure of the training set. This information is exploited for the estimation of an adequate subset of the training patterns serving as RBF centers and for the estimation of effective parameter settings for those centers. The IBL learning steps are applicable to both the traditional and the statistical distance metric spaces and improve significantly the performance in both cases. The obtained results with this two-level learning method are significantly better than the traditional nearest neighbour schemes in many data mining problems. 相似文献