首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Damping properties of two austenitic stainless steel grades, EN 1.4318 and EN 1.4301, were investigated. The test materials were cold rolled to different reductions and damping capacity was measured as a function of temperature with an internal friction method. Microstructures of the test materials were studied by means of X-ray diffraction (XRD) and magnetic measurements. The results showed that damping capacity of the studied materials depended on the amounts of strain-induced ε- and α′-martensite phases. At temperatures around 0 °C, highest damping capacity was achieved with cold rolling reduction of 10 to 15 pct. This behavior is related to the existence of ε-martensite and stacking faults. Internal friction peak due to α′-martensite phase was present at the temperature of 130 °C. Strain aging heat treatment at 200 °C for 20 minutes decreased the damping capacity in the entire studied temperature range.  相似文献   

2.
Hot compression tests were conducted in a temperature range of 1173 K to 1323 K (900 °C to 1050 °C) and strain rates of 0.001 seconds−1 to 1 second−1 to investigate the hot deformation behavior of the austenitic stainless steel type 1.4563. The results showed that hot deformation at low temperatures, i.e., 1173 K to 1223 K (900 °C to 950°C), and at low and medium strain rates, i.e., 0.001 seconds−1 to 0.1 seconds−1, results in the dynamic formation of worm-like precipitates on existing grain boundaries. This in turn led to the restriction or even inhibition of dynamic recrystallization. However, at higher temperatures and strain rates when either the time frame for dynamic precipitation was too short or the driving force was low, dynamic recrystallization occurred readily. Furthermore, at low strain rates and high temperatures, there was no sign of particles, but the interactions between solute atoms and mobile dislocations made the flow curves serrated. The strain rate sensitivity was determined and found to change from 0.1 to 0.16 for a temperature increase from 1173 K to 1323 K (900 °C to 1050 °C). The variations of mean flow stress with strain rate and temperature were analyzed. The calculated apparent activation energy for the material was approximately 406 kJ/mol. The hyperbolic sine function correlated the Zener-Hollomon parameter and flow stress successfully at intermediate stress levels. However, at low levels of flow stress a power-law equation and at high stresses an exponential equation well fitted the experimental data.  相似文献   

3.
Deformation-induced phase transformation in a type 304 austenitic stainless steel has been studied in tension at room temperature and −50 °C. The evolution of transformation products was monitored using X-ray diffraction (XRD) line profile analysis of diffraction peaks from a single XRD scan employing the direct comparison method. Crystallographic texture transitions due to deformation strain have been evaluated using (111) γ pole figures. The tensile stress-strain data have been analyzed to explain the influence of underlying deformation-induced microstructural changes and associated texture changes in the steel. It is found that the initial stage of rapidly decreasing strain hardening rate in type 304 steel is primarily influenced by hcp ɛ-martensite formation, and the second stage of increasing strain hardening rate is associated with an increase in the α′-martensite formation. The formation of ɛ-martensite is associated with a gradual strengthening of the copper-type texture components up to 15 pct strain and decreasing with further strain at −50 °C. Texture changes during low-temperature deformation not only change the mechanism of ɛ-martensite formation but also influence the strain rate sensitivity of the present steel.  相似文献   

4.
The hot deformation behavior of a high nitrogen CrMn austenitic stainless steel in the temperature range 1173 to 1473 K (900 to 1200 °C) and strain rate range 0.01 to 10 s−1 was investigated using optical microscopy, stress-strain curve analysis, processing maps, etc. The results showed that the work hardening rate and flow stress decreased with increasing deformation temperature and decreasing strain rate in 18Mn18Cr0.5N steel. The dynamic recrystallization (DRX) grain size decreased with increasing Z value; however, deformation heating has an effect on the DRX grain size under high strain rate conditions. In the processing maps, flow instability was observed at higher strain rate regions (1 to 10 s−1) and manifested as flow localization near the grain boundary. Early in the deformation, the flow instability region was at higher temperatures, and then the extent of this unstable region decreased with increasing strain and was restricted to lower temperatures. The hot deformation equation as well as the quantitative dependence of the critical stress for DRX and DRX grain size on Z value was obtained.  相似文献   

5.
The effect of strain rate on strain-induced γα′-martensite transformation and mechanical behavior of austenitic stainless steel grades EN 1.4318 (AISI 301LN) and EN 1.4301 (AISI 304) was studied at strain rates ranging between 3×10−4 and 200 s−1. The most important effect of the strain rate was found to be the adiabatic heating that suppresses the strain-induced γα′ transformation. A correlation between the work-hardening rate and the rate of γα′ transformation was found. Therefore, the changes in the extent of the α′-martensite formation strongly affected the work-hardening rate and the ultimate tensile strength of the materials. Changes in the martensite formation and work-hardening rate affected also the ductility of the studied steels. Furthermore, it was shown that the square root of the α′-martensite fraction is a linear function of flow stress. This indicates that the formation of α′-martensite affects the stress by influencing the dislocation density of the austenite phase. Olson-Cohen analysis of the martensite measurement results did not indicate any effect of strain rate on shear band formation, which was contrary to the transmission electron microscopy (TEM) examinations. The β parameter decreased with increasing strain rate, which indicates a decrease in the chemical driving force of the αα′ transformation.  相似文献   

6.
The plastic deformation of austenitic iron, represented by a zone-refined iron, an electrolytic iron, an Fe−0.05 C alloy, and an Fe−5.2 Mn alloy, has been documented for the temperature range 950 to 1350°C (1740 to 2460°F) and the strain-rate range 2.8 × 10−5 to 2.3 × 10−2 s−1. The intrusion of recrystallization during deformation restricts the documentation to initial periods of strain usually less than 0.10. The general problem of retaining grain structures representative of polycrystals in specimens annealed at temperatures above 0.95T m is recognized, and a basis for its solution is presented. Chemical composion appears to influence the plastic-flow behavior of austenitic iron primarily through its effect on the grain structure. Thus, the large-grained zone-refined iron is relatively weak, and the difference in behavior between the Fe−0.05 C alloy and the Fe−5.2 Mn alloy is small. Formerly Associate Scientist, U.S. Steel Corporation.  相似文献   

7.
The final heat treatment of austenitic stainless steels of types X 5 CrNi 18 9 (1.4301) and X 2 CrNi 18 10 (1.4306) normally is annealing at 1050°C and subsequent water quenching. The resulting structure is of a metastable fcc-type. Plastic deformation, especially at low temperatures, causes martensitic transformation of these metastable structures. The transformation is accompanied by a substantial flow stress increase. This strengthening mechanism should be used in practice, e.g. to save weight. The deformed structure consists of tetragonal α′-martensite, austenite and hcp ε-martensite. Whereas α′-martensite increases continuously with deformation, the content of ε-martensite reaches a maximum value at about 5% plastic strain at 77 K. The hcp phase is only detectable by means of X-ray analysis, whilst α′-martensite can be determined quantitatively by saturation magnetisation measurement. The flow stress increase during low temperature deformation of metastable austenitic stainless steels is based on normal work-hardening by dislocation accumulation, in addition to a distinct amount of work-hardening due to martensitic transformation. Analysis of the work-hardening behaviour in the range of stable deformation (T > MD) can be used to predict the amount of normal work-hardening when deformation is performed in the instable temperature regime. Separation of the flow stress contributions according to the procedure described above enables the possible savings in weight to be predicted when using cryogenically stretched instable austenitic steels in comparison with stable grades deformed under the same conditions.  相似文献   

8.
9.
An AA6082 alloy was subjected to eight passes of equal channel angular pressing at 100 °C, resulting in an ultrafine grain size of 0.2 to 0.4 μm. The tensile deformation behavior of the material was studied over the temperature range of 100 °C to 350 °C and strain rate range of 10−4 to 10−1 s−1. The evolution of microstructure under tensile deformation was investigated by analyzing both the deformation relief on the specimen surface and the dislocation structure. While extensive microshear banding was found at the lower temperatures of 100 °C to 150 °C, deformation at higher temperatures was characterized by cooperative grain boundary sliding and the development of a bimodal microstructure. Dislocation glide was identified as the main deformation mechanism within coarse grains, whereas no dislocation activity was apparent in the ultrafine grains.  相似文献   

10.
This study compares the dynamic plastic deformation behavior and microstructural evolution of 304L stainless steel with and without metal-forming prestrain, using the compressive split Hopkinson pressure-bar technique and transmission electron microscopy (TEM) under strain rates ranging from 8 × 102 to 5 × 103 s−1 at room temperature, with true strains varying from yield to 0.3. Results show that the flow stress of unprestrained and prestrained 304L stainless steel is sensitive to applied strain rate, but the prestrained material exhibits greater strength. A higher work-hardening rate and higher strain-rate sensitivity are also found in the prestrained material, while an inverse tendency exists for the activation volume. A constitutive equation with our experimentally determined specific material parameters successfully describes both unprestrained and prestrained dynamic behavior. Microstructural observations reveal that the morphologies of dislocation substructure, mechanical twins, microshear bands, and α′ martensite formation are strongly influenced by prestrain, strain, and strain rate. The density of dislocations increases with increasing strain and strain rate for both materials. The dislocation cell size decreases with increasing strain, strain rate, and prestrain. An elongated cell structure appears in the prestrained material as heavy deformation is applied. Mechanical twins are found only in the prestrained material. Microshear bands and α′ martensite are more evident at large strains and strain rates, especially for the prestrained material. Quantitative analysis indicates that the amount of dislocations, mechanical twins, and α′ martensite varies as a function of work-hardening stress (σσ y), reflecting different strengthening effects and degrees of microhardness.  相似文献   

11.
As-received hot-rolled commercial grade AISI 304L austenitic stainless steel plates were solution treated at 1060 °C to achieve chemical homogeneity. Microstructural characterization of the solution-treated material revealed polygonal grains of about 85-μm size along with annealing twins. The solution-treated plates were heavily cold rolled to about 90 pct of reduction in thickness. Cold-rolled specimens were then subjected to thermal cycles at various temperatures between 750 °C and 925 °C. X-ray diffraction showed about 24.2 pct of strain-induced martensite formation due to cold rolling of austenitic stainless steel. Strain-induced martensite formed during cold rolling reverted to austenite by the cyclic thermal process. The microstructural study by transmission electron microscope of the material after the cyclic thermal process showed formation of nanostructure or ultrafine grain austenite. The tensile testing of the ultrafine-grained austenitic stainless steel showed a yield strength 4 to 6 times higher in comparison to its coarse-grained counterpart. However, it demonstrated very poor ductility due to inadequate strain hardenability. The poor strain hardenability was correlated with the formation of strain-induced martensite in this steel grade.  相似文献   

12.
Microstructure development during high-velocity deformation   总被引:1,自引:0,他引:1  
An austenitic stainless steel was deformed at high (103 s−1) strain rates at two levels of strain by electromagnetic forces. Transmission electron microscopy (TEM) studies, X-ray diffraction analysis, and superconducting quantum-interference device (SQUID) measurements show that high strain rates induce the formation of stacking faults and twin structures, enhance the tendency for ɛ-martensite formation, and suppress the amount of α′-martensite. The increased presence of stacking faults and twin structures at high strain rates can be explained by an easy nucleation of partial dislocations at high strain rates and a superior aptitude for partial dislocations to react to high strain rates due to their jump frequency. The suppression of α′-martensite can be explained by the adiabatic heating produced during electromagnetic forming.  相似文献   

13.
14.
Austenitic specimens of Fe-15 wt pct Ni-0.8 wt pct C were tested in tension at strain rates of 10−4 s−1 and 10−1 s−1 over the temperature range −20°C to 60 °C. The influence of strain rate and temperature on the deformation behavior depended on whether stress-assisted or strain-induced martensitic trans-formation occurred during testing. Under conditions of stress-assisted transformation, the ductility was low and independent of strain rate. However, when strain-induced transformation occurred, the duc-tility increased significantly and the higher strain rate resulted in greater ductility and more transfor-mation. Although the ductility increased continuously with temperature, the amount of strain-induced transformation decreased and no martensite was observed above 40 °C. Microstructural examination showed that the martensite was replaced by intense bands and that these bands contained very fine (111) fcc twins. The twinning resulted in enhanced plasticity by providing an additional mode of deformation as slip became more difficult due to dynamic strain aging at the higher temperature. This study confirms that the substructure following deformation will depend on the proximity of the deformation temperature to theM s σ temperature. At temperatures much greater thanM s σ , austenite twinning will occur, while at temperatures close toM s σ , bcc martensite will form.  相似文献   

15.
Hot ductility and fracture mechanisms of a C-Mn-Nb-Al steel   总被引:1,自引:0,他引:1  
Hot-ductility tests of a C-Mn-Nb-Al steel were performed in a tensile machine at different strain rates of 1×10−4, 3×10−4, 1×10−3, and 3×10−3 s−1 and at temperatures of 650 °C, 710 °C, 770 °C, 840 °C, 900 °C, 960 °C, and 1020 °C, which are close to the continuous casting conditions of steel. Fracture surfaces were examined using a scanning electron microscope. It was found that low strain rates and coarse austenitic grains decrease hot ductility. At all test temperatures, when the strain rate decreases, the hot ductility also decreases because the void growth mechanism predominates over void nucleation, giving time for nucleated cracks to grow. This leads, finally, to the catastrophic failure. The minimum hot ductility was found at 900 °C for all strain rates, and the fracture was intergranular. Fractographic evidence showed that the voids formed during the deformation surrounded the austenite grains, indicating that the deformation was concentrated in ferrite bands located in the same places when the testing temperature was in the two-phase field.  相似文献   

16.
The hot compression behavior of a 17-4 PH stainless steel (AISI 630) has been investigated at temperatures of 950 °C to 1150 °C and strain rates of 10−3 to 10 s−1. Glass powder in the Rastegaev reservoirs of the specimen was used as a lubricant material. A step-by-step procedure for data analysis in the hot compression test was given. The work hardening rate analysis was performed to reveal if dynamic recrystallization (DRX) occurred. Many samples exhibited typical DRX stress-strain curves with a single peak stress followed by a gradual fall toward the steady-state stress. At low Zener–Hollomon (Z) parameter, this material showed a new DRX flow behavior, which was called multiple transient steady state (MTSS). At high Z, as a result of adiabatic deformation heating, a drop in flow stress was observed. The general constitutive equations were used to determine the hot working constants of this material. Moreover, after a critical discussion, the deformation activation energy of 17-4 PH stainless steel was determined as 337 kJ/mol.  相似文献   

17.
18.
In this work, a hot compression test was carried out at 1173 K to 1473 K (900°C to 1200 °C), with a strain rate of 0.01 to 1 s−1 up to ~50 pct height reduction on functionally graded steel (FGS) specimens comprised of ferritic, bainitic, austenitic, and martensitic layers (αβγMγ). The stress-strain curves are strongly dependent on temperature and strain rate. Compressive flow stress varied from 40 to 105 MPa depending on the applied temperature and strain rates. Variation in steady-state flow stress with temperature and strain rates was studied. The strain-rate-sensitivity exponent (m) and deformation activation energy (Q) for the αβγMγ composite under studied condition were 0.106 and 354.8 KJ mol−1, respectively, which are within the values of boundary layers of ferrite (304.9 KJ mol−1) and austenite (454.8 KJ mol−1) layers. Given the alternative microstructure of the αβγMγ FGS, a range of deformation mechanisms from dynamic recovery to dynamic recrystallization maybe prevails, where the intensity of each mechanism depends on temperature and strain rates. In accordance with the experimental results, an empirical power-law equation was developed over the range of temperatures and strain rates investigated. The equation accurately describes temperature and strain-rate dependence of the flow stress.  相似文献   

19.
Friction maps have been developed to explain the behavior of aluminum alloys under dynamic tribological conditions generated by the simultaneous effects of temperature and strain rate. A specially designed tribometer was used to measure the coefficient of friction (COF) of AA5083 strips subjected to sliding with a simultaneous application of tensile strain in the temperature range of 693 K to 818 K (420 °C to 545 °C) and strain rates between 5 × 10−3 s−1 and 4 × 10−2 s−1. The mechanisms of plastic deformation, namely, diffusional flow, grain boundary sliding (GBS), and solute drag (SD), and their operation ranges were identified. Relationships between the bulk deformation mechanism and COF were represented in a unified map by superimposing the regions of dominant deformation mechanisms on the COF map. The change in COF (from 1.0 at 693 K (420 °C) and 1 × 10−2 s−1 to 2.1 at 818 K (545 °C) and 4 × 10−2 s−1) was found to be largest in the temperature–strain rate region, where GBS was the dominant deformation mechanism, as a result of increased surface roughness. The role of bulk deformation mechanisms on the evolution of the surface oxide layer damage was also examined.  相似文献   

20.
The tracer diffusion of63Ni in Fe-17 Cr-12 Ni by both volume and grain boundary transport has been studied from 600° to 1250°C. The use of an RF sputtering technique for serial sectioning allowed the determination of very small volume diffusion coefficients at the lower temperatures. Volume diffusion of nickel in this alloy was observed to be much slower than in pure iron or austenitic stainless steel at comparable temperatures. The volume diffusion coefficient is described byD v =8.8 exp (−60,000/RT) cm2/s and grain boundary diffusion is described by σD gb =3.7×10−9 exp (−32,000/RT) cm3/s. R. A. PERKINS, formerly Presidential Intern, Metals and Ceramics Division, Oak Ridge National Laboratory, Oak, Ridge, Tenn. 37830, is  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号