首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DSP应用的特点是计算密集并适合并行处理,传统的可编程处理器与ASIC在性能和灵活性上各有优劣.因此出现了一种新的计算模式-可重构计算.由于它能将效率和灵活性很好地结合在一起,故正得到广泛的关注和研究.本文在介绍可重构计算的概念和分类的基础上,着重讨论了一些主流的可重构计算系统,分析了各类系统应用于DSP的特点,对可重构计算在计算模型,编译器,映射技术以及开发环境等方面的现状和趋势进行了探讨,并给出了自己的思考.  相似文献   

2.
为了获得尽可能高的并行计算单元的计算能力,对SIMD图像处理机的存储系统进行了深入研究.该存储系统根据图像处理应用的特点,使用基于编译获得的数据流存取全局信息进行数据流调度,有效地提高了数据存取的速度,满足了并行计算单元对数据存取速度的要求,为SIMD图像处理机系统性能的提高提供了支持.  相似文献   

3.
Architecture for Dynamically Reconfigurable Embedded Systems (ADRES) is a templatized coarse-grained reconfigurable processor architecture. It targets at embedded applications which demand high-performance, low-power and high-level language programmability. Compared with typical very long instruction word-based digital signal processor, ADRES can exploit higher parallelism by using more scalable hardware with support of novel compilation techniques. We developed a complete tool-chain, including compiler, simulator and HDL generator. This paper describes the design case of a media processor targeting at H.264 decoder and other video tasks based on the ADRES template. The whole processor design, hardware implementaiton and application mapping are done in a relative short period. Yet we obtain C-programmed real-time H.264/AVC CIF decoding at 50 MHz. The die size, clock speed and the power consumption are also very competitive compared with other processors.
S. DupontEmail:
  相似文献   

4.
5.
In this paper, a novel reconfigurable discrete wavelet transform processor architecture is proposed to meet the diverse computing requirements of future generation multimedia SoC. The proposed architecture mainly consists of reconfigurable processing element array and reconfigurable address generator, featuring dynamically reconfigurable capability where the wavelet filters and wavelet decomposition structures can be reconfigured as desired at run-time. The lifting-based reconfigurable processing element array possesses better computation efficiency than convolution-based architectures, and a systematic design method is provided to generate the hardware configurations of different wavelet filters for it. The reconfigurable address generator handles flexible address generation for data I/O access in different wavelet decomposition structures. A prototyping chip has been fabricated by TSMC 0.35 μm 1P4M CMOS process. At 50 MHz, this chip can achieve at most 100 M pixels/sec transform throughput, together with energy efficiency and unique reconfigurability features, proving it to be a universal and extremely flexible computing engine for heterogeneous reconfigurable multimedia systems.Po-Chih Tseng was born in Tao-Yuan, Taiwan in 1977. He received the B.S. degree in Electrical and Control Engineering from National Chiao Tung University in 1999 and the M.S. degree in Electrical Engineering from National Taiwan University in 2001. He currently is pursuing the Ph.D. degree at the Graduate Institute of Electronics Engineering, Department of Electrical Engineering, National Taiwan University. His research interests include VLSI design and implementation for signal processing systems, energy-efficient reconfigurable computing for multimedia systems, and power-aware image and video coding systems.Chao-Tsung Huang was born in Kaohsiung, Taiwan, R.O.C., in 1979. He received the B.S. degree from the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., in 2001. He currently is working toward the Ph.D. degree at the Graduate Institute of Electronics Engineering, National Taiwan University. His major research interests include VLSI design and implementation for signal processing systems.Liang-Gee Chen (S’84–M’86–SM’94–F’01) received the B.S., M.S., and Ph.D. degrees in electrical engineering from National Cheng Kung University, Tainan, Taiwan, R.O.C., in 1979, 1981, and 1986, respectively. In 1988, he joined the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C. During 1993–1994, he was a Visiting Consultant in the DSP Research Department, AT&T Bell Labs, Murray Hill, NJ. In 1997, he was a Visiting Scholar of the Department of Electrical Engineering, University of Washington, Seattle. Currently, he is Professor at National Taiwan University, Taipei, Taiwan, R.O.C. His current research interests are DSP architecture design, video processor design, and video coding systems.Dr. Chen has served as an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY since 1996, as Associate Editor of the IEEE TRANSACTIONS ON VLSI SYSTEMS since 1999, and as Associate Editor of IEEE TRANSACTIONS CIRCUITS AND SYSTEMS II since 2000. He has been the Associate Editor of the Journal of Circuits, Systems, and Signal Processing since 1999, and a Guest Editor for the Journal of VLSI Signal Processing Systems. He is also the Associate Editor of the PROCEEDINGS OF THE IEEE. He was the General Chairman of the 7th VLSI Design/CAD Symposium in 1995 and of the 1999 IEEE Workshop on Signal Processing Systems: Design and Implementation. He is the Past-Chair of Taipei Chapter of IEEE Circuits and Systems (CAS) Society, and is a member of the IEEE CAS Technical Committee of VLSI Systems and Applications, the Technical Committee of Visual Signal Processing and Communications, and the IEEE Signal Processing Technical Committee of Design and Implementation of SP Systems. He is the Chair-Elect of the IEEE CAS Technical Committee on Multimedia Systems and Applications. During 2001–2002, he served as a Distinguished Lecturer of the IEEE CAS Society. He received the Best Paper Award from the R.O.C. Computer Society in 1990 and 1994. Annually from 1991 to 1999, he received Long-Term (Acer) Paper Awards. In 1992, he received the Best Paper Award of the 1992 Asia-Pacific Conference on circuits and systems in the VLSI design track. In 1993, he received the Annual Paper Award of the Chinese Engineer Society. In 1996 and 2000, he received the Outstanding Research Award from the National Science Council, and in 2000, the Dragon Excellence Award from Acer. He is a member of Phi Tan Phi.  相似文献   

6.
H.264/AVC标准采用了4×4整数变换.本文针对4×4正反变换分别提出了两个新的二维直接信号流图.在此基础上,设计了一个支持多变换的可重构高性能二维结构.该结构无需转置寄存器.采用0.18微米CMOS工艺实现了该电路结构.结果表明,该结构同现有典型结构相比具有更高的效率.同采用三个独立的单一变换结构实现的ASIC相比,可重构结构以较少的效率下降(14.4%)获得了较大的芯片面积节省(61.1%).在100MHz的时钟频率下工作,该电路即可实时处理分辨率为4096×2048、每秒60帧的高质量视频序列.  相似文献   

7.
洪琪  曹伟  童家榕 《电子学报》2011,39(5):1059-1063
提出了一种新的支持MPEG-4 AVC/H.264标准4×4整数变换的动态可重构结构.首先,针对4×4正反变换分别推导了两个新的二维直接信号流图.进而设计了一个面向HDTV应用的动态可重构多变换结构.该结构无需转置寄存器且计算单元仅需16个加法器(减法器).采用0.18μm CMOS工艺实现了该电路结构.结果表明,最高...  相似文献   

8.
描述了如何利用TI OMAP芯片设计无线多媒体终端.在介绍了OMAP芯片的双核处理器结构后,阐述了该无线多媒体终端的硬件设计、软件设计,并给出两个示范性多媒体应用实例.测试证明,该终端具有高性能和低功耗的特点,能满足未来无线多媒体业务对手持设备的需求.  相似文献   

9.
An application specific processor for an H.264 decoder with a configurable embedded processor is designed in this research. The motion compensation, inverse integer transform, inverse quantization, and entropy decoding algorithm of H.264 decoder software are optimized. We improved the performance of the processor with instruction‐level hardware optimization, which is tailored to configurable embedded processor architecture. The optimized instructions for video processing can be used in other video compression standards such as MPEG 1, 2, and 4. A significant performance improvement is achieved with high flexibility. Experimental results show that we could achieve 300% performance for the H.264 baseline profile level 2 decoder.  相似文献   

10.
《电子学报:英文版》2017,(6):1154-1160
Multi-media applications contain multibranches loop, it is of low efficiency to map them into traditional Single instruction multiple data (SIMD) structures. Considering the above matter, we proposed a multiinstruction streams extension method for traditional SIMD structures. The main idea is to simultaneously dispatch multiple instruction streams to multiple lanes. Compared with traditional SIMD whose lanes receive the unified single instruction stream but execute conditionally through a lane mask vector, Multi-instruction streams extension grants each of its lanes the ability to receive and execute the instructions of one particular branch path. Thus, it is of high efficiency to map multi-branches loop in applications. The design is finally implemented through Verilog language, and then integrated into the FT-Matrix vector-SIMD chip. Application profiling results shows that the proposed method consumes mere 2.61% area overhead while obtains about 1.8x to 2.4x performance gain.  相似文献   

11.
针对较大循环在可重构处理器上的映射问题提出了一种启发式的算法,将循环划分为在处理器上执行的软件部分和在可重构阵列上执行的硬件部分,并且使两者之间的数据传输量最小.通过测试,相比于原有处理较大循环的方法,该技术降低了13%~29%的循环执行时间.在FPGA验证系统上通过H.264中的运动估计和MPEG-2中的IDCT等多种多媒体核心算法验证了该划分技术.使用该划分技术后,验证系统相比于类似结构在不增加硬件规模的情况下,有平均3.5倍的性能提升.  相似文献   

12.
TMDSP是一个可编程多媒体处理器。面向TMDSP,给出了三种通讯方式:综合业务数字网、以太网、电话网的接口硬件及软件概况。  相似文献   

13.
H.264宏块模式的一种快速判决方案   总被引:1,自引:0,他引:1       下载免费PDF全文
朱红  吴成柯  方勇 《电子学报》2005,33(9):1576-1580
H.264采用了可变块运动估计和率失真优化模式判决,极大地增加了编码器的复杂度.本文利用H.264参考软件对时间/空间相邻宏块模式之间的相关性进行了分析,相应地提出了一种快速算法以降低模式判决的运算复杂度.利用已编码相邻宏块的运动信息和模式类型比率信息预测当前宏块的候选模式类型,然后采用部分率失真优化决定当前宏块的编码模式.如果某些模式不在候选模式之列,就不再对其做运动估计.如果相邻宏块的平均失真超过了预定阈值,当前宏块就采用常规的率失真优化模式判决.实验结果表明,对于A、B类测试图像序列,采用本文方案可以明显降低编码复杂度,而编码质量只有轻微的下降.  相似文献   

14.
This paper presents the implementation of a wireless multimedia DSP chip for mobile applications. The implemented DSP chip supports communication instructions for Viterbi, timing synchronization, etc. as well as multimedia instructions. The DSP can handle variable length data and perform four MACs in a cycle. The proposed DSP employs parallel processing techniques, such as SIMD, vector processing, DSP schemes and adopts low power features for wireless applications. The implemented DSP chip includes test circuits and various peripherals, such as DMA, bus arbitration, timer, etc. This chip has been modeled by Verilog HDL and implemented using the 0.35 m HCB60 library. The total gate count excluding memory is about 170,000 gates and the clock frequency is 100 MHz.Junghoo Lee received the B.S. degree in electronic engineering from Ajou University, Suwon, Korea in 2002. He is currently working toward the Ph.D. degree with School of Electrical and Computer Engineering, Ajou University. His main research interests include SOC design and application-specific DSP chip design.Myung H. Sunwoo received the B.S. degree in electronic engineering from the Sogang University in 1980, the M.S. degree in electrical and electronics from the Korea Advanced Institute of Science and Technology in 1982, and the Ph.D. degree in electrical and computer engineering from the University of Texas at Austin in 1990.He worked for Electronics and Telecommunications Research Institute (ETRI) in Daejeon, Korea from 1982 to 1985 and Digital Signal Processor Operations, Motorola, Austin, TX from 1990 to 1992. Since 1992, he has been a Professor with the School of Electrical and Computer Engineering, Ajou University in Suwon, Korea. In 2000, he was a Visiting Professor in the Department of Electrical and Computer Engineering, the University of California, Davis, CA. He is the Director of the National Research Laboratory sponsored by the Ministry of Science and Technology. His research interests include VLSI architectures, SOC design for multimedia and communications, and application-specific DSP architectures.Dr. Sunwoo has published more than 120 papers in international transactions/journals and conferences and also has 28 patents including five U.S. patents. He served as a Technical Program Chair of the IEEE Workshop on Signal Processing Systems (SIPS) in 2003 and a member of the technical program committee of various international conferences. He has received a number of research awards from the Ministry of Commerce, Industry and Energy, Samsung Electronics, and professional foundations. He served as an Associate Editor for the IEEE Transactions on Very Large Scale Integration (VLSI) Systems (2002–2003) and as a Guest Editor for the Journal of VLSI Signal Processing (Kluwer, 2004). Currently, He is a Senior Member of IEEE and a Chair of the IEEE CAS Society of the Seoul Chapter.  相似文献   

15.
一种新的IP网络视频通信丢包错误纠正方案   总被引:2,自引:0,他引:2  
艾达  常义林  罗忠  王静 《电子与信息学报》2006,28(10):1879-1882
分组丢失是IP交换网络常见的现象。该文针对下一代网络多媒体通信,提出了一套IP网络抗分组丢失的方案。包括纠删编码、打包和发送以及接收端错误掩盖。与常见的纠删编码相比,该文提出的[9,5,3]码具有构造简单,编解码时间短,纠删能力高的优点。打包和发送方案根据[9,5,3]码的纠删性能对视频数据打包,并以一定顺序发送,提高了纠删码抗突发错误的能力。采用新的视频编码方案H.264所提供的抗误码工具灵活的宏块次序(FMO),对纠删失效的视频数据在解码端进行错误掩盖。  相似文献   

16.
针对嵌入式应用中三维图形渲染的要求,设计了一款可编程的多线程顶点处理器.该顶点处理器采用单指令多数据结构,一条指令能够同时处理4个单精度浮点数,并采用多线程技术,支持4个线程并发执行,能够有效地减少发生数据写读冲突时的停顿周期数,提高了处理效率.相对于单线程结构,4线程顶点处理器在较小的硬件开销下,可以实现2.1~2.8倍的性能提升.该顶点处理器支持OpenGL ES 1.1和Vertex Shader Model 1.1,在90nm CMOS工艺库下可实现频率为200MHz,性能为50Mvertices/s.  相似文献   

17.
《电子学报:英文版》2017,(6):1161-1167
By exploring symmetric cryptographic data level and instruction-level parallelism, the reconfigurable processor architecture for symmetric ciphers is presented based on Very-long instruction word (VLIW) structure. The application-specific instruction-set system for symmetric ciphers is proposed. As for the same arithmetic operation of symmetric ciphers, eleven kinds of reconfigurable cryptographic arithmetic units are designed by the reconfigurable technology. As to the requirement of high energy-efficient design, the loop buffer structure for instruction fetching unit is proposed to reduce the power consumption significantly with the same frequency as conventional, meanwhile, the chain processing mechanism is proposed to improve the cryptographic throughput without any area overhead. It has been fabricated with 0.18μm CMOS technology. The result shows that the processor can work up to 200MHz, and the fourteen kinds of cryptographic algorithms were mapped in the processor, the encryption throughput of AES, SNOW2.0 and SHA2 algorithm can achieve 1.19Gbps, 1.05Gbps, and 407Mbps respectively.  相似文献   

18.
Providing quality mobile video applications in hand-held mobile devices requires increased computational capability. Using Single Instruction Multiple Data (SIMD) techniques to expose and accelerate the data parallelism inherent in video processing increases performance in handheld and wireless systems. The paper introduces a new 64-bit SIMD coprocessor of the Intel® XScale® microarchitecture which is optimized for low-power handheld applications. The architecture blends the SIMD media processing style with the capabilities of the XScale microarchitecture. This paper provides an overview of the architecture, its instruction set, programming model, the pipeline organization and functional units. The paper also describes how key features of architecture improve the performance of video applications as compared to a scalar implementation. The performance and power improvements based upon measured results are analyzed to show how the opportunities of power savings by reducing the frequency and voltage can be realized.Nigel C. Paver has 13 years experience with the ARM architecture, and in the Intel PCA Components group in Austin, Texas, he is responsible for the architecture and implementation of multimedia coprocessors for the Intel XScale micro-architecture. He is also involved in product architecture and definition of Intel PCA processors. Before Intel, Nigel was one of the lead designers of the early AMULET asynchronous ARM microprocessors at the University of Manchester. He was also vice president in a startup company which used asynchronous design techniques to produce a low-power asynchronous DSP core. Nigel holds a Master of Science degree and Ph.D. in computer science from the University of Manchester and a Bachelor of Science degree in electronics from UMIST.Moinul Khan is a multimedia product architect at Intel Corporation PCA Components group. He is responsible PCA graphics and security architecture. His research interests are virtual prototyping, signal processing algorithms and architecture and communications networking. Before joining Intel he was a technology specialist and founding member of a startup at ATDC, Georgia. He worked on his doctoral research at Georgia Center for Advanced Telecommunications Technology at Georgia Institute of Technology. He received his B.Tech form Indian Insti-ture of Technology and MSEE from Georgia Tech. He also worked as a research member for Canadian Institute for Telecommunications Research and Bell Communications Laboratories.Bradley C. Aldrich joined Intel in 1997 where he is currently an architect within the PCA Components Group. His current work includes the development of coprocessor instruction support in addition to image capture and display technologies for XScale based application processors. He was previously a member of the Intel/Analog Devices joint development architecture team responsible for video enhancements for the Micro Signal Architecture. Prior to that he was a video system architect in Intel’s Digital Imaging and Video Division working on CMOS sensors, still cameras, and tethered PC based video peripherals. He has also worked as a device engineer for Motorola and as a test engineer for Tektronix. He received a BSEE in 1988 and MSEE in 1994 from the University of Texas at San Antonio.Christopher D. Emmons received a Bachelor of Science degree in Computer Science from the University of Texas at Austin in 2003. He joined Intel in 2001 and is currently a multimedia architect responsible for algorithm development and performance optimization for handheld products within the PCA Components Group. Prior to this he worked as an applications engineer providing performance and power analysis in support of product marketing groups. His research interests include video compression, operating system design, and dynamic resource management.  相似文献   

19.
陆晓凤  刘锋  佟冬  王克义 《电子学报》2011,39(5):1072-1076
本文针对H.264 Fidelity Range Extensions(FRExt,High Profile)解码过程中扩展的所有变换,采用二维矩阵分解和基于矩阵运算提取公共因子的操作,利用通用运算单元来设计高效的可重构VLSI结构.该结构不但节省面积(可重构变换结构只消耗了4807门电路),并且具有高性能(采用TSM...  相似文献   

20.
孔明 《电视技术》2011,35(18):34-36
介绍一种基于5 GHz传输的多媒体收发系统的设计方案及其实现,提出以WVA5000芯片组为核心,采用MB86H51单芯片对多媒体信号进行H.264编解码处理,构建“无线多媒体连接”解决方案.系统的TS流无线传输的有效视频负荷最高可达50 Mbit/s,其有效性、稳定性和可靠性已在实际应用中得到验证.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号