首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MXenes(Mn+1XnTx)是一类二维无机化合物材料,它由几个原子层厚度的过渡金属氮化物、碳化物或碳氮化物构成。由于具有大的比表面积、快速充放电性能和小的体积变化等优点,MXenes受到越来越多研究人员的关注。研究者希望能够利用MXenes材料研发出具有优异电化学性能的锂离子电池负极材料,从而提高电池的能量密度和寿命。然而MXenes材料制备过程中产生的层间堆积和坍塌限制了其进一步的发展。目前,研究人员通过将MXenes与其他材料复合制备出具有新结构的材料,不仅可以扩大层间距,改善材料结构,还有助于改进材料的电化学性能。本文介绍了MXenes与碳纳米材料、过渡金属氧化物、过渡金属硫化物和硅等材料复合改性来提高材料电化学性能的研究策略,并探讨了MXenes和碱金属等材料复合实现稳定无枝晶的锂离子电池金属负极的方案。最后,阐述了MXenes应用在锂离子电池负极材料中面临的挑战,并作出了展望。   相似文献   

2.
铁氧化物锂离子电池负极材料具有比容量高、资源丰富、价格便宜和环境友好等优势,是目前高容量负极材料的研究热点之一.然而,铁氧化物负极材料巨大的体积效应、较差的循环性能以及大的首次可逆容量损失,影响了其在锂离子电池中的应用.目前研究最多的铁氧化物负极材料是α-Fe_2O_3和Fe_3O_4,理论容量分别为1 007 mA·h·g~(-1)和924 mA·h·g~(-1).关于其电化学性能的改进方法,包括制备不同形貌与尺寸的纳米结构材料以及铁氧化物/碳纳米复合材料.介绍了铁氧化物锂离子电池负极材料的储锂机理及其存在的问题,综述了各类铁氧化物负极材料的制备方法、影响因素及电化学性能,并对铁氧化物负极材料的进一步研究、发展应用予以展望.  相似文献   

3.
安富强  何冬林  庞铮  李平 《工程科学学报》2019,41(10):1307-1314
以沥青为软碳原料,商业石墨的载体材料,通过高温热解法成功合成了硅/石墨/碳复合材料,同时原位生成了微米尺度的碳纤维.该硅/石墨/碳复合材料具有诸多优点,石墨片层堆叠之间的空隙为硅的体积膨胀提供了有效的空间,沥青热解碳材料的包覆能一定程度抑制硅基材料的体积效应和提高其电子电导率,同时微米级的碳纤维能提高材料的长程导电性和结构稳定性,从而极大的改善负极材料循环性能.通过电化学测试表明,硅/石墨/碳复合材料中硅/石墨/碳复合负极材料在200 mA·g-1电流密度下具有650 mA·h·g-1的可逆容量,在200 mA·g-1电流密度下经过500圈循环后容量保持率为92.8%,每圈的容量衰减率仅为0.014%,展现了优异的循环性能.   相似文献   

4.
在锂离子电池中通过固相反应合成WS2/C复合负极材料。实验结果证实,WS2/C复合负极材料呈片层状结构,负极材料的比表面积较高,有利于锂离子在片层间的脱出和嵌入。碳复合后,二硫化钨纳米片的层间距保持0.63 nm不变。复合的碳材料附着在硫化钨纳米片层交接处,起到良好的导电作用,有利于提高材料的导电性。复合10%C的负极材料性能最好,整体放电比容量高于未添加碳的负极材料,在100 mA/g的电流密度下循环30次,材料的放电比容量达到876 mAh/g,高于未复合碳的材料的805 mAh/g。  相似文献   

5.
以氧化亚硅为原料,利用氧化亚硅的歧化反应制备纳米硅颗粒、二氧化硅均匀分散的前驱体,然后利用低残余碳的原位高温固相分解制备得到了多孔结构的硅碳材料,并对材料的表面及微观结构和电化学性能进行了表征。SEM显示材料呈微米级多孔球形分布,该结构可以有效吸收充放电过程中硅的晶格膨胀。XRD和TEM结果表明,氧化亚硅材料在950℃开始发生歧化反应。首次比容量达到了1300.2mAh/g,库伦效率达到了84.5%。硅碳石墨复合材料首次比容量为462.6mAh/g,库伦效率为90.5%,循环50圈后比容量为441.7mAh/g,仍远高于常见石墨负极。  相似文献   

6.
采用高温热解方法成功地合成了高容量硅/碳复合负极材料.通过X射线衍射分析、热重分析、扫描电子显微镜观察、透射电子显微镜观察、恒电流充放电测试、循环伏安法等手段研究了复合材料的性能.结果表明:硅/碳复合材料由Si、C以及少量SiO2组成;硅/碳复合材料中碳的质量分数约在39%左右;经电化学性能测试,在电流0.2 m A下,该硅/碳复合材料首次充电容量768 m Ah·g-1,首次库仑效率75.6%,70次循环后可逆比容量仍为529 m Ah·g-1,平均容量衰减率为0.44%.这些性能改善归因于硅/碳复合材料中碳的引进,硅表面存在的碳涂层提供了一个快速锂运输通道,降低了电池的阻抗并且充放电过程中稳定了电极的组成.   相似文献   

7.
一维纳米结构材料主要以硅纳米线以及硅纳米管为主,而硅纳米线作为一维硅纳米材料的典型代表,不仅具有半导体所有特殊性质,还展现出不同于普通硅材料的场发射、热导率及可见光致发光等物理性质,在众多热门方面如纳米电子器件、光电子器件,尤其是新能源领域-作为锂离子电池(LIBs)的负极材料目前引起世界的广泛关注,因为其一维几何形状适应了循环过程中硅的大体积变化,并能在所有操作阶段易于电子传递,因此具有巨大的潜在应用价值,成为当今世界科学研究领域的热点和前沿。然而纳米线的大规模可控制备依然是个难题。本文介绍了一维硅纳米线结构的制备、合成方法以及作为硅负极电化学性能的研究进展,并对储锂性能提升机制进行了探讨。  相似文献   

8.
以铝硅合金(AlSi)粉末为原料,采用脱合金法获得多孔硅(porous silicon, P-Si)微球。再采用原位化学聚合法在P-Si微球表面包覆聚吡咯(PPy),得到PPy包覆的P-Si微球(P-Si@PPy),最后将P-Si@PPy置于Ar气氛中在800℃下煅烧3 h得到氮掺杂碳包覆多孔硅(nitrogen-doped carbon-coated porous silicon, P-Si@NC)微球。利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)以及电化学测试等手段对材料的形貌、结构及电化学性能进行表征。结果表明,多孔硅微球直径在1μm左右,氮掺杂碳层的厚度约为18 nm。将P-Si@NC复合材料应用于锂离子电池负极,在0.1 A/g电流密度下首次放电比容量高达2 609.2 m Ah/g,首次库伦效率达87.52%,充放电循环50次后放电比容量仍能达到1 574.8 m Ah/g,展示出优异的电化学性能。P-Si@NC微球的多孔结构为嵌/脱锂过程中硅的膨胀/收缩提供了缓冲空间,氮掺杂碳层既作为保护层维持颗粒的完整性,又加速了锂离子和电子转移。  相似文献   

9.
纳米多孔金属凭借比表面积大、孔结构丰富以及导电性好的优势在能源存储与转化领域具有广泛的应用。基于此,本文着重介绍了纳米多孔金属原位负载金属氧化物、硫化物、磷化物用作锂/钠离子电池负极材料的合成方法,及利用缺陷调控和表面包覆改性进一步改善其电化学性能的策略。上述研究为设计可逆容量高、循环稳定性好的电极材料提供了借鉴。  相似文献   

10.
用高容量硅材料替代传统石墨负极以提升锂离子电池能量密度是当下的研究热点.硅负极在实际应用过程中由于自身电导率低、嵌锂时存在严重的体积膨胀效应,使得材料的倍率性能差、循环性能不理想,难以实现商业化应用.将导电性能优异的金属与储锂容量高的硅进行复合被视为有效的改性策略之一.本文介绍了硅-金属基负极在材料的结构设计、合成方法...  相似文献   

11.
近年来,水系钠离子电池由于原材料储量丰富、安全可靠、环境友好等优势在电化学储能系统中引起了愈加广泛的关注与研究。在已报道的诸多水系钠离子电池负极材料中,具有超离子导体结构的NaTi2(PO4)3(NTP)成为最具代表性的负极材料。然而,由于NTP固有的本征电子导电性差与不可逆的“溶解-沉淀”行为阻碍了其进一步实际应用。本文综述了近几年来NTP及其复合材料作为负极材料在水系钠离子电池中的研究进展,总结了NTP改性的主要方法,包括表面修饰、尺寸形貌控制和掺杂取代,并对每种改性措施进行了详细论述。最后对NTP作为水系钠离子电池负极材料的应用前景进行了展望。  相似文献   

12.
本论文在综述锂离子电池及材料研究进展的基础上,针对LiMnPO4导电性差和离子扩散速率慢的问题,对其进行表面碳包覆和Mn位Mg掺杂改性,采用固相法合成了LiM0.98Mg0.02PO4/C复合正极材料,利用XRD、SEM和电化学测试等手段研究了焙烧温度对LiMn0.98Mg0.02PO4/C材料结构和性能的影响。研究表明,700℃所得橄榄石型LiMn0.98Mg0.02PO4正极材料性能最佳。  相似文献   

13.
采用静电喷雾沉积技术制备了Al/Ni双元素掺杂改性的锰酸锂薄膜电极材料,并通过XRD、SEM、循环伏安法及恒流充放电法对材料物相、形貌及电化学性能进行分析。结果表明,静电喷雾沉积技术可制备结晶度高、形貌致密、电化学性能良好的掺杂改性锰酸锂薄膜电极材料;Al/Ni双元素掺杂可显著提高锰酸锂材料的循环性能及倍率性能。  相似文献   

14.
硅因其具有较高的理论比容量(约为3 579 mAh/g,Li15Si4)而成为最具吸引力的负极材料。为了解决硅材料高达300%的体积膨胀和导电性差等问题,以聚丙烯酸(PAA)、蚕茧提取物丝素蛋白和纳米硅(Si NPs)为原料,通过简单的部分炭化,一步法制备了Si@CAS电极材料,并系统研究了聚丙烯酸(A)/丝素蛋白(S)的比例和炭化温度对Si@CAS复合材料电化学性能的影响。结果表明:当聚丙烯酸与丝素蛋白的质量比为1∶1,炭化温度为450℃时,所制备的Si@CAS负极的电化学性能较优,远超Si@CA和Si@CS负极材料的电化学性能。Si@CAS负极材料可在0.5 A/g电流密度下循环200圈后比容量可达1 404.2 mAh/g。同时,该材料展现出了优异的倍率性能,在4 A/g电流密度下比容量仍可达1 452.8 mAh/g。  相似文献   

15.
除了材料自身改性研究外,应用研究也是高容量硅碳复合材料的研究重点。以X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究了硅碳复合材料和导电剂的形貌特征,以电化学方法研究了3种不同形貌的复合导电剂(片状与小颗粒、类球形与小颗粒、纤维状与小颗粒)对硅碳电极的电化学性能的影响。结果表明,形貌和颗粒大小与活性材料本身差异较大的导电添加剂有利于改善电极导电性,提升电极循环性能。气相生长炭纤维和炭黑颗粒在电极的表面和截面分散均匀,组成三维导电网络。气相生长炭纤维和炭黑颗粒的协同作用有利于改善硅/石墨电极的循环性能。硅碳电极20周(电流密度0.15 m A·cm~(-2))的容量保持率增加了8%,较大电流密度下(0.75m A·cm~(-2))其容量保持率由78%提高到90%。类球形石墨-炭黑颗粒复合导电剂使得Si/C电极的首次库仑效率提高到82%以上。  相似文献   

16.
LiFePO_4作为正极材料电化学性能优越,是发展潜力巨大的锂离子正极材料之一,但由于导电率和锂离子扩散速率问题,一直制约其发展。首先阐述了LiFePO_4的微观结构、充放电原理以及充放电反应模型,回顾了近年来国内外改善磷酸铁锂的电化学性能所进行的研究,重点介绍了离子掺杂、碳包覆和材料纳米化方法对LiFePO_4正极材料的影响以及目前仍然存在的问题,最后展望了该领域的发展趋势,并指出继续进行深入的理论研究和工艺改进是今后的重点研究方向。  相似文献   

17.
硅(Si)因拥有高的比容量,资源丰富等优势有望成为下一代高性能锂离子电池负极材料,但其导电性差和循环过程中体积膨胀严重等缺陷限制了其进一步应用。采用喷雾干燥法,以玉米淀粉、纳米硅和NH4VO3作为原料,经碳化与氮化后获得氮化钒/纳米硅/碳复合微球(Si@VN/C)。氮化钒的引入提供了电子/离子快速传输通道,提高了纳米硅的导电率,并使纳米硅保持了良好的结构稳定性。碳层将作为纳米硅颗粒的保护层,避免纳米硅与电解液直接接触,有效缓解纳米硅充放电后的体积膨胀。Si@VN/C展现出良好的循环性能,在0.2 A·g-1电流密度下循环130圈后容量为818 mAh·g-1,在0.5 A·g-1高电流密度下循环300圈后可逆容量仍保持580.5 mAh·g-1。  相似文献   

18.
为提升钒电池负极侧电极的电化学活性,采用液相氧化法对碳纳米管进行改性,并将其引入石墨毡表面制备复合电极。首先对碳纳米管与石墨毡的电化学性能进行对比,再通过液相氧化改性对碳纳米管的电化学活性进一步优化,最后制备了碳纳米管石墨毡复合电极,并采用充放电测试考察其性能表现。结果表明:在浓H2SO4与浓HNO3体积比为1︰3,温度80 ℃,改性时间2 h条件下得到的碳纳米管电化学活性最佳。在120 mA/cm2的电流密度下,以复合电极为负极的电池电压效率和能量效率分别为87.96%、83.47%,分别比石墨毡(82.08%、77.31%)提高了5.88和6.16个百分点,具有良好的倍率性能。  相似文献   

19.
硅拥有理论比容量高、锂化电压低和资源丰富的突出优势,是最具潜力的负极材料之一。然而,其巨大的体积变化导致的性能快速衰减和高成本的复杂合成工艺,仍是阻碍其工业化应用的关键。因此,我们通过将纳米硅嵌入到钴-铁双金属有机骨架(MOFs)中,制备得到多孔硅基复合材料(Si@CoFe/NC)。该结构兼具MOFs衍生材料的高导电性和独特的多孔特性,能有效的减缓充放电过程中电极的体积效应,因而展现出优异的电化学性能。所制备材料具有高达832 mAhg~(-1)(1Ag~(-1))的初始可逆比容量,且经过100次循环后,比容量依然维持在598mAhg-1。这项研究工作提出了一种简单的方法来制备具有优异电化学性能的硅基复合材料,在锂离子电池负极中具有较大的应用潜力。  相似文献   

20.
新能源汽车产业发展是实现我国“双碳”战略的重要举措.石墨因其高导电率、高容量和高稳定性等优点,成为当前主流的负极材料,其需求量和报废量增长迅速.废石墨负极因含多种金属、黏结剂、电解液等,具有污染性和资源性双重特点,其高效清洁回收利用成为人们研究的热点与重点问题.首先介绍了全球石墨矿产资源分布及其消费结构,表明我国石墨资源较为丰富(约占全球15.7%),但产量与消费量全球第一,分别达到65.4%和86.6%,且电池负极消费比重日益增长.为提高石墨负极利用水平,系统综述了石墨负极回收利用研究进展,阐述了石墨负极的再生方法,包括物理法、湿法浸出、火法及其他方法.为进一步提高再生石墨负极的电化学性能,改性技术(如元素掺杂、碳包覆、复合等方法)也受到人们的广泛关注.此外,还概括了石墨负极合成的其他新型功能材料,如石墨烯及氧化石墨烯、电容器、吸附剂和催化剂等,为石墨负极高值利用提供了新的选择.最后,总结了负极石墨材料回收利用的技术瓶颈和面临的挑战,为其绿色高效循环利用提供了研究思路和发展方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号