首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
The reduction of pyrene (Py) at a mercury channel electrode is studied in acetonitrile solution, both in the dark and under conditions where the pyrene radical anion (Py−.) is photoexcited, using a wavelength of 501.7 nm. In the dark a reversible one-electron process occurs forming the radical anion. However, upon photoexcitation of the electrogenerated radical anion, photocurrents are observed, and the precise electrode mechanism is shown to be: The photocurrent arising from further reduction of Py, since rapid homogeneous reactions of Py−2 give electroinactive products. With this scheme an “effective” second order decay of Py−√ is observed, RATE = −keff[Py−√]p2 where keff is proportional to k3 I/kf. keff has been evaluated from analysis of the limiting current-flow rate behaviour at the channel electrode at the channel electrode. This was found to be 4.0 ± 0.1 × 103 mol−1 dm3 s−1 at a light intensity of 0.30 W cm−2 and a pyrene concentyration of 2.97 mM.  相似文献   

2.
Quasi-steady state hydrodynamic voltammetry at a rotating-disc electrode and electrochemical impedance spectroscopy were used to investigate the influence of triethyl-benzyl-ammonium (TEBA) chloride on the kinetics of copper electrodeposition from sulphate acidic electrolytes. SEM and X-ray diffraction analysis were used to examine the morphology and the structure of copper deposits. The kinetic parameters (i 0, c, k 0), obtained by both Tafel and Koutecky–Levich interpretations lead to the conclusion that TEBA acts as an inhibitor of copper electrodeposition process, as a consequence of its adsorption on the electrode surface. The influence of TEBA on the kinetics of copper electrodeposition was explained in terms of a reaction model confirmed by the simulated impedance spectra. TEBA acts only as a blocking agent competing for adsorption active sites of the cathodic surface with cuprous ions without changing the reaction pathway corresponding to the absence of the additive.  相似文献   

3.
A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with nickel oxide (NiOx) nanoparticles and water-soluble dyes. By immersing the GC/NiOx modified electrode into thionine (TH) or celestine blue (CB) solutions for a short period of time (5–120 s), a thin film of the proposed molecules was immobilized onto the electrode surface. The modified electrodes showed stable and a well-defined redox couples at a wide pH range (2–12), with surface confined characteristics. In comparison to usual methods for the immobilization of dye molecules, such as electropolymerization or adsorption on the surface of preanodized electrodes, the electrochemical reversibility and stability of these modified electrodes have been improved. The surface coverage and heterogeneous electron transfer rate constants (ks) of thionin and celestin blue immobilized on a NiOx-GC electrode were approximately 3.5 × 10−10 mol cm−2, 6.12 s−1, 5.9 × 10−10 mol cm−2 and 6.58 s−1, respectively. The results clearly show the high loading ability of the NiOx nanoparticles and great facilitation of the electron transfer between the immobilized TH, CB and NiOx nanoparticles. The modified electrodes show excellent electrocatalytic activity toward hydrogen peroxide reduction at a reduced overpotential. The catalytic rate constants for hydrogen peroxide reduction at GC/NiOx/CB and GC/NiOx/TH were 7.96 (±0.2) × 103 M−1 s−1 and 5.5 (±0.2) × 103 M−1 s−1, respectively. The detection limit, sensitivity and linear concentration range for hydrogen peroxide detection were 1.67 μM, 4.14 nA μM−1 nA μM−1 and 5 μM to 20 mM, and 0.36 μM, 7.62 nA μM−1, and 1 μM to 10 mM for the GC/NiOx/TH and GC/NiOx/CB modified electrodes, respectively. Compared to other modified electrodes, these modified electrodes have many advantages, such as remarkable catalytic activity, good reproducibility, simple preparation procedures and long-term stabilities of signal responses during hydrogen peroxide reduction.  相似文献   

4.
Voltammetric and chronopotentiometric methods were used to study the electrochemical behaviour of copper in the NaF-AlF3-BaCl2 ternary melt at 750° C. Copper, graphite and platinum were used as electrode materials. It was shown that the electrochemical reduction of copper ions is a single step process, with the reversible exchange of one electron at a copper electrode. The value of the diffusion coefficient of the cuprous ion, determined by means of chronopotentiometry, isD =(2.8±0.3)× 10–5 cm2 s–1.  相似文献   

5.
Polarographic reduction of the zinc-maleic acid complexes has been studied at the dropping mercury electrode (dme) in aqueous medium at 30° and ionic strength 2.0 Gelling's method is used for determining the reversible half-wave potentials and the kinetics parameters (α and Ks) for the quasireversible reduction of the complexes. The value of α and Ks varied from 0.41 to 0.35 and 2.58 × 10−3 to 2.21 × 10−3 cm/s respectively with the ligand concentration changing from 0.00 to 0.60 M. Analysis of the polarographic characteristics ,of the system by the DeFord and Hume method gave the following values of the overall stability constants: β1 = 50±2; β2 = 160± 10 and β3 = 2250 ± 50. The overall stability constants of the zinc-maleic acid complexes have also been calculated using the recently developed method of Mihailov. The resulting values are: β1 = 29.9, β2 = 301.4 and β3 = 2025. Percentage distribution of the complex species present in the system is shown as a function of log/ligand concentration.  相似文献   

6.
Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.  相似文献   

7.
Several transport parameters (as hydraulic conductivity K, apparent diffusion coefficient Dp and diffusion accessible porosity η of HTO and iodide) have been intensively measured in the laboratory on high-quality cores taken at the Mol-1 borehole of the Mol site, in Belgium. The borehole was cored in 1997 from about 145 to 325 m depth, including the whole thickness of the Boom Formation, a Tertiary clay situated between 186 and 288 m depth (ground level), and part of the surrounding layers.The hydraulic conductivity measurements confirm the low permeability of the Boom Clay. An upper 90-m-thick clay layer within this formation can be considered as homogeneous with respect to the hydraulic conductivity. The vertical hydraulic conductivity Kv (i.e. K perpendicular to the bedding) is in the order of magnitude of 10−12 m s−1 and the average is 2.3×10−12 m s−1. This layer comprises from top to bottom the “Transition Zone”, the Putte Member, the Terhagen Member and the top of the Belsele-Waas Member of the Boom Formation. The 12 m at the base of the Formation, which corresponds to the lower part of the Belsele-Waas Member is characterised by larger Kv values (ranging between 10−11 and 9×10−11 m s−1).The same thick clay layer can also be considered as homogeneous, regarding the values of the apparent diffusion coefficient and the diffusion accessible porosity η of tritiated water (HTO) and iodide. The average value of the diffusion accessible porosity is 0.37±0.03 for HTO and 0.16±0.02 for iodide. The apparent diffusion coefficient varies from 1.1×10−10 to 5.5×10−10 m2 s−1 for HTO and from 9.1×10−11 to 5.2×10−10 m2 s−1 for iodide.  相似文献   

8.
In this paper the direct electron transfer of hemoglobin (Hb) was carefully investigated by using a room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) modified carbon paste electrode (CILE) as the basal working electrode. Hb was immobilized on the surface of CILE with the nanocomposite film composed of Nafion and CdS nanorods by a step-by-step method. UV–vis and FT-IR spectra showed that Hb in the composite film remained its native structure. The direct electrochemical behaviors of Hb in the composite film were further studied in a pH 7.0 phosphate buffer solution (PBS). A pair of well-defined and quasi-reversible cyclic voltammetric peaks of Hb was obtained with the formal potential (E0′) at −0.295 V (vs. SCE), which was the characteristic of heme Fe(III)/Fe(II) redox couples. The direct electrochemistry of Hb was achieved on the modified electrode and the apparent heterogeneous electron transfer rate constant (ks) was calculated to be 0.291 s−1. The formal potentials of Hb Fe(III)/Fe(II) couple shifted negatively with the increase of buffer pH and a slope value of −45.1 mV/pH was got, which indicated that one electron transfer accompanied with one proton transportation. The fabricated Hb sensor showed good electrocatalytic manner to the reduction of trichloroacetic acid (TCA).  相似文献   

9.
Amorphous silica gel modified carbon paste electrode (CPE) offers substantial improvements in voltammetric sensitivity and selectivity towards determination of dopamine (DA). Cyclic voltammetry of Fe(CN)63−/4− as a negatively charged probe revealed that the surface of the silica gel modified carbon paste electrode had a high density of negative charge at pH 8.0. Therefore, the modified electrode adsorbed DA (pKa = 8.9) and enhanced its voltammetric response while repulsed ascorbic acid (AA) (pKa = 4.2) and uric acid (UA) (pKa = 5.4) and inhibited their interfering effects. The influence of various experimental parameters including percent of silica gel in the CPE, pH of solution, and accumulation time and potentials, on the voltammetric response of DA was investigated. At the optimum conditions, the analytical curve was linear for dopamine concentrations from 2.0 × 10−7 to 1.0 × 10−6 mol L−1 and 2.0 × 10−6 to 1.5 × 10−4 mol L−1 with a detection limit (3σ) of 4.8 × 10−8 mol L−1. The prepared electrode was used for determination of DA spiked into DA injection and human serum samples, and very good recovery results were obtained over a wide concentration range of DA.  相似文献   

10.
A modified graphite electrode with functionalized ionic liquid (IL) pyridinium derivative of β-cyclodextrin ([CDbPy]BF4) was prepared by layer-by-layer self-assembly technique. With ferrocene as probe, the characterization of the (CDIL/PDDA)n/GE SAMs in the solution of phosphate (PBS, pH 7.0) was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronocoulometry. The electrochemical behavior of p-chloronitrobenzene (p-CNB) at the modified electrode was studied. It was found that the modified electrode could catalyze the reduction of p-CNB and made the cathode peak move about 100 mV in positive direction in the solution of 0.1 mol/L PBS (pH 7.0). Differential pulse voltammetry (DPV) was applied to the determination of p-CNB in waste water with satisfactory results. The detection limit and the linear range of the concentration of p-CNB to the reduction peak current were 8.0 × 10−8 mol/L and 3.0 × 10−7–1.0 × 10−5 mol/L, respectively.  相似文献   

11.
A novel gadolinium selective coated graphite electrode based on 2,6-bis-[1-{N-cyanopropyl,N-(2-methylpridyl)}aminoethyl]pyridine [P] is described. The best performance was exhibited by the electrode having membrane composition P:NaTPB:PVC:NPOE as 8:4:30:58 (%, w/w). The electrode demonstrates excellent potentiometric characteristics towards gadolinium ion over several interfering ions. The electrode exhibited a Nernstian response to Gd3+ ion over a wide concentration range 2.8 × 10−7 to 5.0 × 10−2 M with a detection limit (6.3 ± 0.1) × 10−8 M and slope 19.6 ± 0.1 mV decade−1 of aGd3+. Furthermore, it showed a fast response time (12 s) and can be used for 2.5 months without significant divergence in its characteristics. Noticeably, the electrode can tolerate the concentration of different surfactants up to 1.0 × 10−4 M and can be used successfully in 30% (v/v) ethanol media and 10% (v/v) methanol and acetonitrile water mixture. The useful pH range of this sensor is 2.0 to 8.0. It is sufficiently selective and can be used for the determination of Gd3+ ions in waste water and rock samples. It also serves as a good indicator in the potentiometric titration of GdCl3 with EDTA.  相似文献   

12.
Differential capacitance measurements in 96%o-phosphoric acid at 160° C have been used to follow the underpotential deposition of copper on supported platinum in a porous electrode. At a potential in the range 0·2–0·3 V versus RHE the capacitance,C, increased as copper deposition proceeded and a plot ofC versust 1/2 was linear during a substantial part of the deposition process. The slope dC/dt 1/2 was proportional to the copper concentration in solution, suggesting that the Cu/Cu2+ pseudocapacitance reflected the quantity of copper deposited and that copper deposition was diffusion controlled. The effective diffusion coefficient estimated from the results was 10–7 cm2 s–1 — some 40 times smaller than the copper ion diffusion coefficient measured separately. At potentials of 0·4 V and above, capacitance measurements could not be used to follow copper deposition because the Cu/Cu2+ pseudocapacitance decayed with time.  相似文献   

13.
Cytosine plays an important role in many biological processes since it constitutes the buildings blocks of DNA and RNA. A two-step reduction of Zn2+ ions at the dropping mercury electrode in acetic buffers at pH 4 and 5 in the presence of cytosine was examined. The measurements were performed using an impedance method in a wide potential and frequency ranges.The values of the standard rate constants ks in the both studied system decrease from 3.8 × 10−3 to 2 × 10−3 cm s−1 at pH 4 and from 5.1 × 10−3 to 2.5 × 10−3 cm s−1 at pH 5. The values of the standard rate constants ks1 characterizing the stage of the first electron transfer decrease similarly. However, the values of the standard rate constants ks2 characterizing the stage of the second electron exchange decrease more markedly in the buffer at pH 4 than in the buffer at pH 5.  相似文献   

14.
The structure and composition of substances adsorbed to a Bi(0 0 1) electrode in ethanolic LiClO4 solution were studied by cyclic voltammetry, electrochemical impedance and infrared reflectance spectroscopic methods. An analysis of the results demonstrates that at negative surface charge densities, there are no chemisorbed particles at the bismuth–ethanol solution interface. In solutions containing dissolved oxygen, an insoluble surface compound was detected at positive surface charge densities (E > −0.38 V vs. Ag|AgCl). In a behavior very different from that of the platinum–electrolyte interface, no ethanol oxidation products were detected on the Bi electrode. Absorption peaks measured in the infrared spectra are mainly caused by the variation of solvated perchlorate anion adsorption resulting from changes in surface charge density with the variation of the bismuth electrode's potential.  相似文献   

15.
Manganese acetate octakis-(2-diethyaminoethanethiol) phthalocyanine (AcMnODEAETPc) was newly synthesized and characterized by spectroscopic and electrochemical methods. Solution electrochemistry of the complex showed three redox processes assigned to MnIIIPc−1/MnIIIPc−2, MnIIIPc−2/MnIIPc−2 and MnIIPc−2/MnIIPc−3 species. The new molecule was polymerized onto a glassy carbon electrode (GCE) to form thin films of different thickness, giving poly-10-AcMnODEAETPc-GCE, poly-20-AcMnODEAETPc-GCE and poly-30-AcMnODEAETPc-GCE, where 10, 20 and 30 represent the number of voltammetry scans during polymerization. Three distinct redox processes were observed on the modified electrode in 0.1 M phosphate buffer solution, pH 5, which confirmed the formation of the polymer. The current signal due to the herbicide, bentazon, was dependent on film thickness; the best signal was obtained on poly-20-AcMnODEAETPc-GCE while poly-10-AcMnODEAETPc-GCE gave the least signal. However, the signals due to the herbicide were better on the different films compared to the bare electrode. Electrochemical impedance spectroscopy (EIS) technique revealed that differences in film thickness offered different charge transfer resistances, Rct, hence difference in current signals for bentazon oxidation were observed on these films. A Tafel slope of 77 mV/decade, obtained for the herbicide on poly-20-AcMnODEAETPc-GCE, denotes a fast one electron transfer followed by a slow chemical step in the electro-oxidation of bentazon. The voltammetry signals of the herbicide on the films indicated the likely involvement of ring-based redox processes in the detection of the herbicide. A plot of background corrected current response, on this film, versus the concentration of bentazon was linear within the range 50–750 μM with a detection limit of 2.48 × 10−7 M.  相似文献   

16.
A flow-through cell using ion-selective electrodes has been designed for continuous on-line monitoring of electrochemical reactors. A full range of design considerations is discussed and the characteristics of the cell investigated. Optimal operating conditions are found, of which solution flow rate and constancy of temperature are particularly important. The cell was also designed to have a rapid response time and minimal dead volume so as to give continuous measurements of gradually changing metal ion concentrations. Performance has been evaluated using laboratory-simulated conditions and pilot-plant operation of the Ecocell, a rotating-cylinder electrode reactor for the electrowinning of copper from dilute solutions (10–1000 ppm).Nomenclature C 0 initial metal ion concentration (ppm) - C t metal ion concentration at timet (ppm) - E potential (V) - E 0, 1 a constant potential (V) - F Faraday constant (= 96498 C) - k apparent rate constant (s–1) - r volumetric flow rate (cm3 s–1) - R universal gas constant (= 8.314 J K–1) - T absolute temperature (K) - t time (s) - V volume of gradient device (cm3) - relaxation time (s)  相似文献   

17.
The electrochemical behaviour of N-acetyl-l-cysteine (NAC) has been investigated by linear and cyclic voltammetry on gold electrode at room temperature. The results showed two oxidation peaks under acid and neutral conditions and only one in basic medium. For each oxidation, as many electron was exchanged as proton. The influence of both the concentration and the potential scan rate on the peak currents highlighted a diffusion-controlled phenomenon for the first peak and an adsorption-limited reaction rate for the second one. The diffusion coefficient of NAC in solution and the surface concentration of the adsorbed species at pH 3 and 7 were close to 2 × 10−4 to 2 × 10−5 cm2 s−1 and 6 × 10−9 to 6 × 10−10 mol cm−2, respectively. Film transfer experiments resulted in an irreversible adsorption of NAC on gold electrode, and the formation of a self-assembled monolayer (SAM).  相似文献   

18.
The work examines the possibility of a simple reaction model describing a complex organic electrosynthesis, such as the formation of p-anisidine. The experimental results obey the linear relationships of the model and in consequence the kinetic constants obtained in this way define reaction behaviour. The paper demonstrates how such a model can play a useful role in the design of pilot plant experimentation. Results from a parallel plate cell fit prediction from the model.Nomenclature [X] Concentration of species X (kmol m–3) - b Slope of Tafel plot (mV–1) - E Electrode potential (mV) - F Faraday (C g-equiv–1) - F Faraday based on k-equiv = 103F (C k-equiv–1) - i A Partial current density for the primary reaction (A m–2) - i B Partial current density for the consecutive secondary reaction (A m–2) - i H Partial current density for the parallel secondary reaction (A m–2) - i Total current density=i A+i B+i H (A m–2) - k Reaction rate constant (A m–2 per kmolm–3) - k H Rate constant for the parallel secondary electrode reaction (A m–2) - k I Individual mass transfer coefficient (m s–1) - N Flux (kmol m–2 s–1) - r Reaction rate (kmol m–2 s–1) Sufixes A Appertaining to primary electrode reaction or species A - B Appertaining to consecutive secondary electrode reaction or species B - b In the bulk of the electrolyte - H Parallel secondary electrode reaction - s Near the electrode surface  相似文献   

19.
The structural role of copper ions in melts (glasses) of the Na2O–SiO2–Cu2O–CuO system is analyzed in the framework of the acid–base concept with due regard for the geometric (the radius ratio for Cu2(1)+ and O2– ions) and energy (the mean enthalpies of the Cu2(1)+–O bonds) factors. It is demonstrated that copper ions in the structure fulfill the function of modifier cations. In these melts, the Cu1+–Cu2+ redox equilibrium can be described without regard for the formation of [Cu2(1)+O4/2]2(3)– ionic complexes (which could be incorporated into the structure of silicon–oxygen anions) and [Cu2+O b/k ]2 – b/k polyhedra providing the interaction between Cu2+ ions and anions. The influence of the formation of these polyhedra on the redox equilibrium is considered within the formalism of chemical thermodynamics. The composition dependence of the oxygen ion exponent pO is measured by an electromotive force (emf) technique. The ratio between the numbers of copper atoms with different valences is determined by chemical analysis. The experimental data obtained are in agreement with the theoretical inferences.  相似文献   

20.
A simple fluorescence technique is proposed for the measurement of the diffusion coefficient of oxygen into polystyrene–clay composite films. The composite films were prepared from the mixture of surfactant-free pyrene (P)-labeled polystyrene latexes (PS) and modified bentonite (MNaLB) at various compositions at room temperature. These films were annealed at 200 °C above the glass transition (Tg) temperature of polystyrene for 10 min. Oxygen diffusion into the films was monitored with steady state fluorescence (SSF) measurements. Measurements were performed at room temperature for different film compositions (0, 5, 10, 20, 30, 50 and 60 mass% modified bentonite) films to evaluate the effect of MNaLB content on oxygen diffusion. The diffusion coefficient, D of oxygen was determined by the fluorescence quenching method by assuming Fickian transport and increased from 7.4 × 10 10 to 26.9 × 10 10 cm2 s 1 with increasing MNaLB content. This increase in D value was explained by formation of microvoids in the film. These voids are large enough to contribute to the penetration of oxygen molecules through the films. The montmorillonite content did not affect the quenching rate constant, kq and mutual diffusion coefficient, Dm values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号