首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic study has been performed to determine the characteristics of an optimized nucleation layer for GaN growth on sapphire. The films were grown during GaN process development in a vertical close-spaced showerhead metalorganic chemical vapor deposition reactor. The relationship between growth process parameters and the resultant properties of low temperature GaN nucleation layers and high temperature epitaxial GaN films is detailed. In particular, we discuss the combined influence of nitridation conditions, V/III ratio, temperature and pressure on optimized nucleation layer formation required to achieve reproducible high mobility GaN epitaxy in this reactor geometry. Atomic force microscopy and transmission electron microscopy have been used to study improvements in grain size and orientation of initial epitaxial film growth as a function of varied nitridation and nucleation layer process parameters. Improvements in film morphology and structure are directly related to Hall transport measurements of silicon-doped GaN films. Reproducible growth of silicon-doped GaN films having mobilities of 550 cm2/Vs with electron concentrations of 3 × 1017 cm−3, and defect densities less than 108 cm−2 is reported. These represent the best reported results to date for GaN growth using a standard two-step process in this reactor geometry.  相似文献   

2.
Mg- and Si-doped GaN and AlGaN films were grown by metalorganic chemical vapor deposition and characterized by room-temperature photoluminescence and Hall-effect measurements. We show that the p-type carrier concentration resulting from Mg incorporation in GaN:Mg films exhibits a nonlinear dependence both on growth temperature and growth pressure. For GaN and AlGaN, n-type doping due to Si incorporation was found to be a linear function of the silane molar flow. Mg-doped GaN layers with 300K hole concentrations p ∼2×1018 cm−3 and Si-doped GaN films with electron concentrations n∼1×1019 cm−3 have been grown. N-type Al0.10Ga0.90N:Si films with resistivities as low as p ∼6.6×10−3 Ω-cm have been measured.  相似文献   

3.
The influence of diluent gas on the metalorganic vapor phase epitaxy of AlN and GaN thin films has been investigated. A computational fluid dynamics model using the finite element method was employed to improve film uniformity and to analyze transport phenomena. The properties of AlN and GaN thin films grown on α(6H)-SiC(0001) substrates in H2 and N2 diluent gas environments were evaluated. Thin films of AlN grown in H2 and N2 had root mean square (rms) roughness values of 1.5 and 1.8 nm, respectively. The surface and defect microstructures of the GaN thin films, observed by scanning and transmission electron microscopy, respectively, were very similar for both diluents. Low temperature (12K) photoluminescence measurements of GaN films grown in N2 had peak intensities and full widths at half maximum equal to or better than those films grown in H2. A room temperature Hall mobility of 275 cm2/V·s was measured on 1 μm thick, Si-doped, n-type (1×1017 cm−3) GaN films grown in N2. Acceptor-type behavior of Mg-doped GaN films deposited in N2 was repeatably obtained without post-growth annealing, in contrast to similar films grown in H2. The GaN growth rates were ∼30% higher when H2 was used as the diluent. The measured differences in the growth rates of AlN and GaN films in H2 and N2 was attributed to the different transport properties of these mixtures, and agreed well with the computer model predictions. Nitrogen is shown to be a feasible alternative diluent to hydrogen for the growth of AlN and GaN thin films.  相似文献   

4.
The structural properties and surface morphology of AlGaN/GaN structures grown on LiGaO2 (LGO), sapphire, and hydride vapor phase epitaxy (HVPE)-grown GaN templates are compared. AlGaN grown on LGO substrates shows the narrowest x-ray full width at half maximum (FWHM) for both symmetric 〈00.4〉 and asymmetric 〈10.5〉 reflections. Atomic force microscopy (AFM) analysis on AlGaN surfaces on LGO substrates also show the smoothest morphology as determined by grain size and rms roughness. The small lattice mismatch of LGO to nitrides and easily achievable Ga-polarity of the grown films are the primary reasons for the smoother surface of AlGaN/GaN structure on this alternative substrate. Optimizations of growth conditions and substrate preparation results in step flow growth for an AlGaN/GaN structure with 300 Å thick Al0.25Ga0.75N on 2.4 μm thick GaN. A high III/V flux ratio during growth and recently improved polishing of LGO substrates aids in promoting two dimensional step flow growth. The GaN nucleation layer directly on the LGO substrate showed no evidence of mixed phase cubic and hexagonal structure that is typically observed in the nucleation buffer on sapphire substrates. Cross-sectional high-resolution transmission electron microscopy (HRTEM) was performed on an AlGaN/GaN heterostructure grown on LGO. The atomic arrangement at the AlGaN/GaN interface was sharp and regular, with locally observed monolayer and bilayer steps.  相似文献   

5.
采用条形Al掩模在Si(111)衬底上进行了GaN薄膜侧向外延的研究.结果显示,当掩模条垂直于Si衬底[11-2]方向,也即GaN[10-10]方向时,GaN无法通过侧向生长合并得到表面平整的薄膜;当掩模条平行于Si衬底[11-2]方向,也即GaN[10-10]方向时,GaN侧向外延速度较快,有利于合并得到平整的薄膜.同时,研究表明,升高温度和降低生长气压都有利于侧向生长.通过优化生长工艺,在条形Al掩模Si(111)衬底上得到了连续完整的GaN薄膜.原子力显微镜测试显示,窗口区域生长的GaN薄膜位错密度约为1×109/cm2,而侧向生长的GaN薄膜位错密度降低到了5×107/cm2以下.  相似文献   

6.
Nonpolar ( ) m-plane gallium nitride has been grown heteroepitaxially on (100) γ-LiAlO2 by several groups. Previous attempts to grow m-plane GaN by hydride vapor phase epitaxy (HVPE) yielded films unsuitable for subsequent device regrowth because of the high densities of faceted voids intersecting the films’ free surfaces. We report here on the growth of planar m-plane GaN films on (100) γ-LiAlO2 and elimination of bulk and surface defects. The morphology achieved is smooth enough to allow for fabrication of m-plane GaN templates and free-standing substrates for nonpolar device regrowth. The GaN films were grown in a horizontal HVPE reactor at 860–890°C. Growth rates ranged from 30 μm/h to 240 μm/h, yielding free-standing films up to 250-μm thickness. The m-plane GaN films were optically specular and mirror-like, with undulations having 50–200-nm peak-to-valley heights over millimeter length scales. Atomic force microscopy revealed a striated surface morphology, similar to that observed in m-plane GaN films grown by molecular beam epitaxy (MBE). Root-mean-square (RMS) roughness was 0.636 nm over 25-μm2 areas. Transmission electron microscopy (TEM) was performed on the m-plane GaN films to quantify microstructural defect densities. Basal-plane stacking faults of 1×105 cm−1 were observed, while 4×109 cm−2 threading dislocations were observed in the g=0002 diffraction condition.  相似文献   

7.
The present work describes the novel, relatively simple, and efficient technique of pulsed laser deposition for rapid prototyping of thin films and multi-layer heterostructures of wide band gap semiconductors and related materials. In this method, a KrF pulsed excimer laser is used for ablation of polycrystalline, stoichiometric targets of wide band gap materials. Upon laser absorption by the target surface, a strong plasm a plume is produced which then condenses onto the substrate, kept at a suitable distance from the target surface. We have optimized the processing parameters such as laser fluence, substrate temperature, background gas pressure, target to substrate distance, and pulse repetition rate for the growth of high quality crstalline thin films and heterostructures. The films have been characterized by x-ray diffraction, Rutherford backscattering and ion channeling spectrometry, high resolution transmission electron microscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy, cathodoluminescence, and electrical transport measurements. We show that high quality AlN and GaN thin films can be grown by pulsed laser deposition at relatively lower substrate temperatures (750–800°C) than those employed in metal organic chemical vapor deposition (MOCVD), (1000–1100°C), an alternative growth method. The pulsed laser deposited GaN films (∼0.5 μm thick), grown on AlN buffered sapphire (0001), shows an x-ray diffraction rocking curve full width at half maximum (FWHM) of 5–7 arc-min. The ion channeling minimum yield in the surface region for AlN and GaN is ∼3%, indicating a high degree of crystallinity. The optical band gap for AlN and GaN is found to be 6.2 and 3.4 eV, respectively. These epitaxial films are shiny, and the surface root mean square roughness is ∼5–15 nm. The electrical resistivity of the GaN films is in the range of 10−2–102 Θ-cm with a mobility in excess of 80 cm2V−1s−1 and a carrier concentration of 1017–1019 cm−3, depending upon the buffer layers and growth conditions. We have also demonstrated the application of the pulsed laser deposition technique for integration of technologically important materials with the III–V nitrides. The examples include pulsed laser deposition of ZnO/GaN heterostructures for UV-blue lasers and epitaxial growth of TiN on GaN and SiC for low resistance ohmic contact metallization. Employing the pulsed laser, we also demonstrate a dry etching process for GaN and AlN films.  相似文献   

8.
A recessed gate AlGaN/GaN high-electron mobility transistor (HEMT) on sapphire (0 0 0 1), a GaN metal-semiconductor field-effect transistor (MESFET) and an InGaN multiple-quantum well green light-emitting diode (LED) on Si (1 1 1) substrates have been grown by metalorganic chemical vapor deposition. The AlGaN/GaN intermediate layers have been used for the growth of GaN MESFET and LED on Si substrates. A two-dimensional electron gas mobility as high as 9260 cm2/V s with a sheet carrier density of 4.8×1012 cm−2 was measured at 4.6 K for the AlGaN/GaN heterostructure on the sapphire substrate. The recessed gate device on sapphire showed a maximum extrinsic transconductance of 146 mS/mm and a drain–source current of 900 mA/mm for the AlGaN/GaN HEMT with a gate length of 2.1 μm at 25°C. The GaN MESFET on Si showed a maximum extrinsic transconductance of 25 mS/mm and a drain–source current of 169 mA/mm with a complete pinch-off for the 2.5-μm-gate length. The LED on Si exhibited an operating voltage of 18 V, a series resistance of 300 Ω, an optical output power of 10 μW and a peak emission wavelength of 505 nm with a full-width at half-maximum of 33 nm at 20 mA drive current.  相似文献   

9.
GaN epitaxial layers were grown on sapphire substrates in a separate-flow reactor by metalorganic chemical vapor deposition. The flow-rate ratio of H2 on the upper stream to NH3 on the bottom stream is varied from 0.5 to 2. The growth condition and characterization of the GaN epitaxial layers are investigated in detail. The H2 flow rate of the upper stream strongly affects the reactant gas flow pattern near the substrate surface and thus influences the quality of epitaxial layers. At the optimum H2/NH3 flow ratio of 1.0, we can obtain a good quality of GaN epitaxial layers which exhibit a strong near band-edge emis-sion in the 20 K photoluminescence (PL), a full width at half maximum of 66 meV for the 300 K PL, an electron mobility of 266 cm2/V-s and concentration of 1 × 1018 cm−3 at 300 K.  相似文献   

10.
In this paper, we report the study of the electrical characteristics of GaN and AlGaN vertical p-i-n junctions and Schottky rectifiers grown on both sapphire and SiC substrates by metal-organic chemical-vapor deposition. For GaN p-i-n rectifiers grown on SiC with a relatively thin “i” region of 2 μm, a breakdown voltage over 400 V, and forward voltage as low as 4.5 V at 100 A/cm2 are exhibited for a 60-μm-diameter device. A GaN Schottky diode with a 2-μm-thick undoped layer exhibits a blocking voltage in excess of ∼230 V at a reverse-leakage current density below 1 mA/cm2, and a forward-voltage drop of 3.5 V at a current density of 100 A/cm2. It has been found that with the same device structure and process approach, the leakage current of a device grown on a SiC substrate is much lower than a device grown on a sapphire substrate. The use of Mg ion implantation for p-guard rings as planar-edge terminations in mesageometry GaN Schottky rectifiers has also been studied.  相似文献   

11.
The growth of GaN and AlGaN by molecular beam epitaxy (MBE) has been studied using GaN/SiC substrates. The GaN/SiC substrates consisted of ∼3 μm thick GaN buffer layers grown on 6H-SiC wafers by metalorganic vapor phase epitaxy (MOVPE) at Crée Research, Inc. The MBE-grown GaN films exhibit excellent structural and optical properties—comparable to the best GaN grown by MOVPE. AlxGa1−xN films (x ∼ 0.06-0.08) and AlxGa1−xN/GaN multi-quantum-well structures which display good optical properties were also grown by MBE on GaN/SiC substrates.  相似文献   

12.
Intentionally undoped and three different, doped layer structures are used to investigate properties of AlGaN/GaN high electron mobility transistors (HEMTs) before and after SiN passivation. For unpassivated devices, the drain current, transconductance, cutoff frequency, and microwave output-power increase with increased doping level, in spite of an increase in the gate-leakage current. After passivation, an overall performance improvement of all devices occurs. The passivation-induced sheet charge decreases from 2×1012 cm−2 in undoped structures to ∼0.7×1012 cm−2 in higher doped structures and performance improvement with passivation is less pronounced for higher doped devices. However, the output power of unpassivated and passivated devices on higher doped structures is much higher than that on the undoped-passivated counter-part. These results underline an advantage of the doped layer structure for the preparation of high-performance AlGaN/GaN HEMTs.  相似文献   

13.
The structural, electrical, and optical properties of GaN grown on 6H-SiC(0001) substrates by molecular beam epitaxy are studied. Suitable substrate preparation and growth conditions are found to greatly improve the structural quality of the films. Threading dislocation densities of about 3×109 cm−2 for edge dislocations and <1×106 cm−2 for screw dislocations are achieved in GaN films of 0.8 μm thickness. Mechanisms of dislocation generation and annihilation are discussed. Increasing the Ga to N flux ratio used during growth is found to improve the surface morphology. An unintentional electron concentration in the films of about 5×1017 cm−3 is observed, and is attributed to excess Si in the films due to a Si-cleaning step used in the substrate preparation. Results from optical characterization are correlated with the structural and electronic studies.  相似文献   

14.
Acid etching for accurate determination of dislocation density in GaN   总被引:2,自引:0,他引:2  
Hot phosphoric-acid etching and atomic force microscopy (AFM) were used to etch and characterize various GaN materials, including freestanding GaN grown by hydride vapor-phase epitaxy (HVPE), metal-organic chemical-vapor deposition (MOCVD) GaN films on sapphire and silicon carbide, and homoepitaxial GaN films on polished freestanding-GaN wafers. It was found that etching at optimal conditions can accurately reveal the dislocations in GaN; however, the optimal etch conditions were different for samples grown by different techniques. The as-grown HVPE samples were most easily etched, while the MOCVD homoepitaxial films were most difficult to etch. Etch-pit density (EPD) ranging from 4×106 cm−2 to 5×109 cm−2 was measured in close agreement with the respective dislocation density determined from transmission electron microscopy (TEM).  相似文献   

15.
The effect of high-temperature growth on the crystalline quality and surface morphology of GaN and Al x Ga1?x N grown by ammonia-based metalorganic molecular-beam epitaxy (NH3-MOMBE) has been investigated as a means of producing atomically smooth films suitable for device structures. The effects of V/III ratio on the growth rate and surface morphology are described herein. The crystalline quality of both GaN and AlGaN was found to mimic that of the GaN templates, with (002) x-ray diffraction (XRD) full-widths at half- maximum (FWHMs) of ~350 arcsec. Nitrogen-rich growth conditions have been found to provide optimal surface morphologies with a root-mean-square (RMS) roughness of ~0.8 nm, yet excessive N-rich environments have been found to reduce the growth rate and result in the formation of faceted surface pitting. AlGaN exhibits a decreased growth rate, as compared with GaN, due to increased N recombination as a result of the increased pyrolysis of NH3 in the presence of Al. AlGaN films grown directly on GaN templates exhibited Pendellösung x-ray fringes, indicating an abrupt interface and a planar AlGaN film. AlGaN films grown for this study resulted in an optimal RMS roughness of ~0.85 nm with visible atomic steps.  相似文献   

16.
N-doped p-type ZnO thin films were grown on c-sapphire substrates, semi-insulating GaN templates, and n-type ZnO substrates by metal organic chemical vapor deposition (MOCVD). Diethylzinc and oxygen were used as precursors for Zn and O, respectively, while ammonia (NH3) and nitrous oxide (N2O) were employed as the nitrogen dopant sources. X-ray diffraction (XRD) studies depicted highly oriented N-doped ZnO thin films. Photoluminescence (PL) measurements showed a main emission line around 380 nm, corresponding to an energy gap of 3.26 eV. Nitrogen concentration in the grown films was analyzed by secondary ion mass spectrometry (SIMS) and was found to be on the order of 1018 cm−3. Electrical properties of N-doped ZnO epilayers grown on semi-insulating GaN:Mg templates were measured by the Hall effect and the results indicated p-type with carrier concentration on the order of 1017 cm−3.  相似文献   

17.
High-electron-mobility transistors (HEMTs) with a highly resistive two-layer buffer layer (AlGaN/GaN) were grown on 6H-SiC substrates by metalorganic chemical vapor deposition. The characteristics were compared with those of conventional HEMTs utilizing GaN as the high-resistivity buffer. The results of x-ray diffraction and atomic force microscopy indicate that the crystal quality of the HEMT heterostructure is not deteriorated by the AlGaN buffer layer. The direct-current (DC) characteristics of the HEMTs with the two different structures are similar, while the off-state breakdown voltage is enhanced and the mobility of the two-dimensional electron gas is improved by the AlGaN buffer layer. The reasons for the effects of the AlGaN buffer layer are discussed systematically.  相似文献   

18.
The electrical properties of sets of simultaneously grown p-type polycrystalline Si films, deposited by SiH4 pyrolysis on polycrystalline high-purity alumina substrates and B-doped during growth, were determined by Hall-effect measurements in the temperature range 77-420K as functions both of impurity doping concentration N (~10l5 to ~1020cm−3) and average grain size (≈1 to ≈125μm) in the film. Room temperature data showed rapidly increasing resistivities and rapidly decreasing free-carrier concentrations for doping below a critical concentration Nm and distinct mobility minima at that concentration, with the value of Nm being larger the smaller the average grain size. Measurements as a function of sample temperature showed the intergrain barrier height Eb, decreasing from a maximum value of ~0.4eV at the critical concentration to very small values (~0.01eV) for concentrations above 1019cm−3, with a functional dependence close to Eb ∝l/N1/2 and Eb for any given concentration being larger the smaller the average grain size. Results are interpreted in terms of the grain-boundary trapping model. Trapped carrier densities in the grain boundaries were calculated to range from ~5×l011cm−2 at N≈Nm to ~5×l012cm−2 for N>1019cm−3, the density being higher the smaller the grain size, and evidence was found for an energy distribution of traps in the Si bandgap, rather than a fixed density at a single discrete energy level. The observed relationship between Nm and average grain size nearly coincides with that of the model for films with ~lμm grain size but sharply departs from it for larger grain sizes, indicating probable applicability of the model for grain sizes up to that range. aThis work was supported by the U.S. Department of Energythrough its San Francisco Operations Office under Contract DE-AC03-79ET23045 and monitored by the Solar Energy Research Institute, Golden, CO. bThese results were first described at the 22nd Electronic Materials Conference, Ithaca, NY, June 21–27, 1980, Paper No. M4.  相似文献   

19.
Hall mobilities as high as 702 and 1230 cm2/Vs at 300 and 160K along with low dislocation densities of 4.0 × 108 cm-2 have been achieved in GaN films grown on sapphire by metalorganic chemical vapor deposition. High growth temperatures have been established to be crucial for optimal GaN film quality. Photoluminescence measurements revealed a low intensity of the deep defect band around 550 nm in films grown under optimized conditions.  相似文献   

20.
Specific features of MOCVD growth of AlGaN/GaN heterostructures have been studied. In the structures obtained, the 2D electron gas in the channel had a density of 1.2×1013 cm?2 and a mobility of 1290 cm2/(V s) at room temperature. The effect of the purity of starting components on the properties of the structure is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号