首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zeolite NaY at 5 g dm−3 concentration, was selected to improve the production of ethanol fermentation by Saccharomyces bayanus from high glucose concentration media. The highest ethanol productivity (3·07 g dm−3 h−1) was obtained from a 220 g dm−3 initial glucose concentration, while the highest ethanol concentration (130 g dm−3) was obtained from a 350 g dm−3 glucose medium. The zeolite is believed to have acted as a pH regulator, maintaining the pH value around 3·7–3·8. Under these conditions cellular viability was preserved and metabolic activity was maintained. Thus all the glucose was consumed, and high ethanol productivity and concentration were obtained. Therefore, the addition of zeolite improved ethanol production from high concentrations of glucose by Saccharomyces bayanus. © 1998 Society of Chemical Industry  相似文献   

2.
Continuous ethanol fermentation of glucose using fluidized bed technology was studied. Saccharomyces cerevisiae were immobilized and retained on porous microcarriers. Over two-thirds of the total reactor yeast cell mass was immobilized. Ethanol productivity was examined as dilution rate was varied, keeping all other experimental parameters constant. Ethanol yield remained high at an average of 0.36 g ethanol g?1 glucose (71% of theoretical yield) as the dilution rate was increased stepwise from 0.04 h?1 to 0.14 h?1. At a dilution rate of 0.15 h?1, the ethanol yield steeply declined to 0.22 g ethanol g?1 glucose (44% of theoretical yield). The low maximum percentage of theoretical yield is primarily due to an extended mean cell residence time, and possibly due to the inhibitory effect of a high dissolved carbon dioxide concentration, enhanced by the probable intermittent levels of low pH in the reactor. Constant ethanol production was possible at a high glucose loading rate of 840 g dm?3 day?1 (attained at a dilution rate of 0.14 h?1). Although the highest average ethanol concentration (97.14 g dm?3) occurred at the initial dilution rate of 0.04 h?1, the peak average ethanol production rate (2.87 g (g yeast)?1 day?1) was reached at a greater dilution rate of 0.11 h-1. Thus, the optimal dilution rate was determined to be between 0.11 h?1 and 0.14 h?1. Ethanol inhibition on yeast cells was absent in the reactor at average bulk-liquid ethanol concentrations as high as 97.14 g dm?3. In addition, zero-order kinetics on ethanol production and glucose utilization was evident.  相似文献   

3.
The effects of temperature, pH, and medium composition on lactic acid production by Lactobacillus casei were investigated. The highest lactic acid productivity values were obtained at 37 °C and pH 5.5. The productivity was 1.87 g dm?3 h?1 at 37 °C in shake flasks. In the fermenter, a productivity of 3.97 g dm?3 h?1 was obtained at pH 5.5. The most appropriate yeast extract concentration was 5.0 g dm?3. Whey yielded a higher productivity value than the analytical lactose and glucose. Initial whey lactose concentration did not affect lactic acid productivity. MnSO4 ·H2O was necessary for lactic acid production by L casei from whey. Product yields were approximately 0.93 g lactic acid g lactose?1. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
An expression system based on Escherichia coli and the T5 promoter allowed the overproduction of a his‐tagged rhamnulose‐1‐phosphate aldolase (RhuA; EC 4.1.2.19), an enzyme with applications in the production of deoxyazasugars and deoxysugars compounds. Shake flask and bioreactor cultivation with E coli M15 (pQErham) were performed under different media and inducing conditions for RhuA expression. A Defined Medium (DM) with glucose as carbon source gave a high volumetric and enzyme productivity (3460 AU dm?3 and 288 AU dm?3 h?1 respectively) compared with Luria–Bertoni (LB) medium (2292 AU dm? 3 and 255 AU dm?3 h?1). The minimum quantity of (isopropyl‐β‐D ‐thiogalactoside) IPTG for optimal induction was estimated in 18–20 µmol IPTG gDCW?1. The highest volumetric production of RhuA (8333 AU dm?3) was obtained when IPTG was added in the late log‐phase. No significant differences were found in specific RhuA activity for induction temperatures of 30 and 37 °C. An effective two‐step purification process comprising affinity chromatography and gel permeation has been developed (overall recovery 66.5%). These studies provide the basis for the further development of an integrated process for recombinant RhuA production suitable for biotransformation applications. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
The continuous production of ethanol from carob pod extract by immobilized Saccharomyces cerevisiae in a packed-bed reactor has been investigated. At a substrate concentration of 150 g dm?3, maximum ethanol productivity of 16 g dm?3 h?1 was obtained at D = 0·4 h?1 with 62·3% of theoretical yield and 83·6% sugars′ utilization. At a dilution rate of 0·1 h?1, optimal ethanol productivity was achieved in the pH range 3·5–5·5, temperature range 30–35·C and initial sugar concentration of 200 g dm?3. Maximum ethanol productivity of 24·5 g dm?3 h?1 was obtained at D = 0·5 h?1 with 58·8% of theoretical yield and 85% sugars′ utilization when non-sterilized carob pod extract containing 200 g dm?3 total sugars was used as feed material. The bioreactor system was operated at a constant dilution rate of 0·5 h?1 for 30 days without loss of the original immobilized yeast activity. In this case, the average ethanol productivity, ethanol yield (% of theoretical) and sugars′ utilization were 25 g dm?3 h?1, 58·8% and 85·5%, respectively.  相似文献   

6.
The biomass growth, lactic acid production and lactose utilisation kinetics of lactic acid production from whey by Lactobacillus casei was studied. Batch fermentation experiments were performed at controlled pH and temperature with six different initial whey lactose concentrations (9‐77 g dm?3) in a 3 dm3 working volume bioreactor. Biomass growth was well described by the logistic equation with a product inhibition term. In addition, biomass and product inhibition effects were defined with corresponding power terms, which enabled adjustment of the model for low‐ and high‐substrate conditions. The Luedeking‐Piret equation defined the product formation kinetics. Substrate consumption was explained by production rate and maintenance requirements. A maximum productivity of 2.5 g dm?3 h?1 was attained with an initial lactose concentration of 35.5 g dm?3. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
Low volumetric solvent productivities are one of the characteristics of an acetone-butanol fermentation by C. acetobutylicum. A calcium alginate immobilized continuous culture was used in a novel gas-sparged reactor to strip the solvents from the aqueous phase and reduce their toxicity. A dilution rate of 0.07 h?1 was found to give maximum solvent productivity at 0.58 g dm?3 h?1, although at 0.12 h?1 the productivity was slightly lower. In order to increase glucose uptake by the culture, feed glucose concentrations were increased over time to attempt to acclimatize the culture. This resulted in a productivity as high as 0.72 g dm?3 h?1 although this production rate was found to be unstable.  相似文献   

8.
This study describes the performance of four different resins, in sequence, to detoxify sugarcane bagasse hemicellulosic hydrolysate and to improve xylitol production by calcium alginate‐entrapped Candida guilliermondii FTI20037 cells under conditions of low oxygen concentration. The treatment resulted in a removal of 82.1% furfural, 66.5% hydroxymethylfurfural, 61.9% phenolic compounds derived from lignin degradation, 100% chromium, 46.1% zinc, 28.5% iron, 14.7% sodium and 3.5% nickel. On the other hand, the removal of acetic acid was not significant. A xylitol yield factor (YP/S) of 0.62 g g?1 and a volumetric productivity (Qp) of 0.24 g dm?3 h?1 were attained in the fermentation process for xylitol production from detoxified hydrolysate. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
β‐fructofuranosidase (EC 3.2.1.26) from Aspergillus sp 27H isolated from soil was investigated for production of fructooligosaccharides (FOS) using whole cells. It possesses hydrolytic and transfructosylating activities that can be altered by modifying the reaction conditions. The optimal conditions for the transfructosylating activity occur in the pH range 5.5–6.0 and at 60 °C, while hydrolytic activity was highest at pH 4.0 and 55 °C. At low sucrose concentration (10 g dm?3) there was rapid conversion of sucrose to glucose and fructose and very low concentrations of FOS were obtained. However, at sucrose concentrations higher than 216 g dm?3 the concentrations of hydrolysis products were reduced. Under the following conditions: pH 5.5, temperature 40 °C, sucrose concentration 615 g dm?3 and enzyme concentration 20β‐fructofuranosidase units g?1 of sucrose, the FOS concentration reached a maximum value of 376 g dm?3 (234 g dm?3 1‐kestose and 142 g dm?3 nystose) and the proportion of FOS in the solids in the reaction mixture was 600–620 g kg?1 at 6 h. These results suggest that β‐fructofuranosidase from Aspergillus sp 27H could be an appropriate enzyme for the commercial production of FOS. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
Simultaneous saccharification and ethanol fermentation (SSF) of sago starch was studied using amyloglucosidase (AMG) and Zymomonas mobilis. The optimal concentration of AMG and operating temperature for the SSF process were found to be 0.5% (v/w) and 35°C, respectively. Under these conditions with 150 g dm?3 sago starch as a substrate, the final ethanol concentration obtained was 69.2 g dm?3 and ethanol yield, YP/S, 0.50 g g?1 (97% of theoretical yield). Sago starch in the concentration range of 100–200 g dm?3 was efficiently converted into ethanol. When compared to a two-step process involving separate saccharification and fermentation stages, the SSF reduced the total process time by half.  相似文献   

11.
The effects caused by alkaline treatment on the susceptibility of waste cardboard to enzymatic hydrolysis have been studied. Optimised conditions leading to extensive saccharification of both cellulose (870 g kg?1 conversion) and hemicelluloses (845 g kg?1 conversion) were identified. Samples treated under selected operational conditions were employed for producing D ‐lactic acid by simultaneous saccharification and fermentation (SSF) in media containing cellulases, β‐glucosidase and Lactobacillus coryniformis ssp torquens cells. SSF fed‐batch experiments led to D ‐lactic acid concentrations up to 23.4 g dm?3 at a product yield of 514 g lactic acid kg?1 of potential glucose and a volumetric productivity of 0.48 g dm?3 h?1. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
The growth and enzymatic production of Pseudomonas sp. BA2 a new L -aminoacylase-producing microorganism, were studied in a bench-top fermenter. Multiple fermentations were carried out in order to determine the optical pH and temperature values. The influence of the substrate concentration on both growth and L aminoacylase activity was also investigated. The maximum growth rate and the greatest yield of enzyme were obtained when the fermentation was carried out at pH 7·5, 25°C and DOT ≥ 50%. N-Acetyl-DL -alanine, at a concentration 20 g dm?3, was used as the sole carbon and nitrogen source. The fermentation process provided a maximum biomass concentration of 3·36 g dry weight dm?3. The highest L -aminoacylase production (11429 U g?1 dry weight) was obtained after 39 h of cultivation. The results were a significant improvement over those previously reported.  相似文献   

13.
BACKGROUND: Efficient conversion of glucose/xylose mixtures from lignocellulose is necessary for commercially viable ethanol production. Oxygen and carbon sources are of paramount importance for ethanol yield. The aim of this work was to evaluate different glucose/xylose mixtures for ethanol production using S. cerevisiae ITV‐01 (wild type yeast) and P. stipitis NRRL Y‐7124 and the effect of supplying oxygen in separate and co‐culture processes. RESULTS: The complete conversion of a glucose/xylose mixture (75/30 g L?1) was obtained using P. stipitis NRRL Y‐7124 under aerobic conditions (0.6 vvm), the highest yield production being Yp/s = 0.46 g g?1, volumetric ethanol productivity Qpmax = 0.24 g L?1 h?1 and maximum ethanol concentration Pmax = 34.5 g L?1. In the co‐culture process and under aerobic conditions, incomplete conversion of glucose/xylose mixture was observed (20.4% residual xylose), with a maximum ethanol production of 30.3 g L?1, ethanol yield of 0.4 g g?1 and Qpmax = 1.26 g L?1 h?1. CONCLUSIONS: The oxygen present in the glucose/xylose mixture promotes complete sugar consumption by P. stipitis NRRL Y‐7124 resulting in ethanol production. However, in co‐culture with S. cerevisiae ITV‐01 under aerobic conditions, incomplete fermentation occurs that could be caused by oxygen limitation and ethanol inhibition by P. stipitis NRRL Y‐7124; nevertheless the volumetric ethanol productivity increases fivefold compared with separate culture. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
Extractive alcoholic fermentations of high glucose concentrations (300 and 400 g dm?3) using a flocculent (saké) and a non‐flocculent (DER24) Saccharomyces cerevisiae strain were compared. The introduction of a Rhizomucor miehei lipase, in the extractive fermentations of 300 g dm?3 of glucose, increased the ethanol extraction due to its esterification with oleic acid, allowing complete glucose consumption at an organic solvent/fermentation medium phase ratio of 1. In these conditions, an increase of ethanol yield was observed. Total glucose consumption was also obtained in enzymatic extractive fermentations of 400 g dm?3 of glucose, but only when oleic acid was added at the exponential growth phase. From the comparison of the extractive fermentation performances obtained using the two yeast strains it was observed that the flocculent strain led to a lower glucose metabolisation rate. This behaviour was related to the highest diffusional limitations that occur in the presence of flocs. The developed processes showed that the association of alcoholic fermentation with enzymatic extraction led to the reduction of inhibitory effects as well as to the simultaneous production of fatty esters which are compounds with several commercial applications. © 2001 Society of Chemical Industry  相似文献   

15.
The production of enriched fructose syrups and ethanol from a synthetic medium with high sucrose concentrations was studied in a batch process using Saccharomyces cerevisiae ATCC 36858. The results showed that the fructose yield was above 92% of theoretical values in synthetic media with sucrose concentrations between 180 g dm?3 and 726 g dm?3. Ethanol yield was about 82% in media with sucrose concentrations up to 451 g dm?3. A product containing 178 g dm?3 fructose, which represents 97% of the total sugar content, and 79 g dm?3 ethanol was obtained using a medium with 360 g dm?3 sucrose. The fructose fraction in the carbohydrates content in the produced syrups decreased with increases in the initial sucrose concentration. In a medium with initial sucrose concentration of 574 g dm?3, the fructose content in the produced broth was 59% of the total carbohydrates. Glycerol and fructo‐oligosaccharides were also produced in this process. The produced fructo‐oligosaccharides started to be consumed when the concentration of sucrose in the media was less than 30% of its initial value. Complete hydrolysis of these sugars was noticed in media with sucrose concentrations below 451 g dm?3. These findings will be useful in the production of ethanol and high fructose syrups using sucrose‐based raw materials with high concentrations of this carbohydrate. © 2001 Society of Chemical Industry  相似文献   

16.
Citrobacter intermedius and Clostridium pasteurianum were grown in 14-dm3 batch reactors on glucose and measured for biomass and H2 production. Gas production with C. intermedius was found to be growth related, whereas that with C. pasteurianum was entirely produced during the stationary phase of growth. The maximum yield and productivity of H2 with C. intermedius was 60% H2 or 1 mol of H2 mol?1 of glucose at a maximum of 3.7 mmol of H2 h?1 and 85% H2 or 1.5 mol of Ha mol?1 of glucose at a maximum of 9.0 mmol of H2 h?1 with C. pasteurianum. The overall H2 productivity (QH2) was 2.5 mmol of H2 h?1 g?1 dry biomass for C. pasteurianum at a glucose concentration of 7.6 g dm?3. As the glucose concentration was increased from 7.6 to 15.4 g dm?3, up to 44% of the gas produced with C. pasteurianum was growth associated. The remainder of the gas was produced in the stationary phase. In this case the overall Ha productivity (QH2) was 1.2 mmol of H2 h?1 g?1 dry biomass. The comparative experiments indicate that maximum yields and rates of H2 production were achieved with C. pasteurianum.  相似文献   

17.
The effects of sucrose on cell growth and nisin production by Lactococcus lactis were investigated in batch and pH feed‐back controlled fed‐batch cultures. In batch cultures, nisin titer reached its maximum, 2658 IU cm?3, at the initial sucrose concentration of 30 g dm?3. With sucrose concentrations higher than 30 g dm?3, nisin production decreased while the biomass was not influenced significantly. By using the pH feed‐back controlled method, residual sucrose concentration could be controlled well in fed‐batch cultures and three conditions (sucrose maintained at 2, 16, 20 g dm?3, respectively) were evaluated. Maintaining a low sucrose concentration at 2 g dm?3 during feeding favored nisin biosynthesis, and the maximum nisin titer obtained was 4961 IU cm?3 compared with 3370 IU cm?3 (16 g sucrose dm?3)and 3498 IU cm?3 (20 g sucrose dm?3), respectively. Copyright © 2005 Society of Chemical Industry  相似文献   

18.
BACKGROUND: Owing to the rapid depletion of petroleum fuel, the production of butanol through biological routes has attracted increasing attention. However, low butanol productivity severely impedes its potential industrial production. It is known that the immobilization of whole cells can enhance productivity in the acetone‐butanol‐ethanol (ABE) continuous fermentation process. Therefore, the objective of this study was to develop a low‐cost continuous operation for butanol production. RESULTS: Bricks were chosen as cell support because of their low cost and ease of use for immobilization. The solvent productivity for the bricks with immobilized cells was 0.7 g L?1 h?1, 1.89 times that of free cells (0.37 g L?1 h?1) at a dilution rate of 0.054 h?1. The productivity improvement can contribute to greater retention of biomass inside the reactor due to immobilization. The increase in glucose feed concentration raised total solvent production. However, it resulted in a decrease in yield (grams of solvents produced per gram of glucose introduced). Continuous operation with immobilized cells at a dilution rate of 0.107 h?1 resulted in a solvent productivity of 1.21 g L?1 h?1, 2.1 times that of the operation at 0.027 h?1. However, the yield (butanol produced per glucose consumed) was decreased to 0.19 from 0.29 under the same glucose feeding condition of 60 g L?1. CONCLUSION: The increase in dilution rate and feed glucose concentration enhanced productivity, but decreased the utilization of substrates and the final solvent concentration. Therefore, a balance between productivity and glucose utilization is required to ensure continuous process operation. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
BACKGROUND: The paper reports an investigation into the possibility of producing poly‐3‐hydroxybutyrate (P(3HB)) polyester using corn syrup, a relatively low cost by‐product from the starch industries. The concentrations of medium components, corn syrup, dipotassium hydrogen phosphate (K2HPO4), sodium dihydrogen phosphate (NaH2PO4) and ammonium sulfate [(NH4)2SO4] were optimized using design of experiments (DOE). RESULTS: Response surface methodology (RSM) under central composite face design (CCFD) was used to obtain the optimum values of medium components and responses in terms of biomass yield and volumetric P(3HB) productivity. The highest P(3HB) productivity and biomass yield obtained were 0.224 g L?1 h?1 and 0.57 g g?1, respectively. A limited‐nitrogen concentration had a higher volumetric P(3HB) productivity (0.170 g L?1 h?1) than that of the excess nitrogen batch experiment (0.0675 g L?1 h?1). The optimum corn syrup:N:P ratio of 50:0.078:1 was based on numerical optimization of the desirability function between biomass yield and volumetric P(3HB) productivity by Cupriavidus necator DSMZ 545. CONCLUSION: The results obtained in this study demonstrated that P(3HB) could be efficiently produced to a high concentration with high productivity by applying nitrogen limitation in a defined medium, indicating this agricultural by‐product to be a suitable nutrient source in further studies to develop biomaterials through biotechnology. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
A strain of Escherichia coli was engineered to overproduce L ‐tryptophan. A fed‐batch fermentation process was developed, producing 30.8 ± 1.4 g dm?3 with a yield on glucose of 0.132 ± 0.010 g g?1. Specific production rate did not appear to be limited by cloned enzyme activity, but by the carbon flux from central metabolism into the aromatic amino acid pathway. The glucose feed rate profile was modified in an attempt to increase the production rate. Tryptophan production was not affected, but led to glutamic acid excretion at high levels. The high specific glucose consumption rate at the low growth rate led to the high glutamate excretion. A new fermentation process involving modification of the feed profile to limit the formation of by‐products was discovered. The resulting final process increased tryptophan production to 42.3 ± 2.7 g dm?3 with yield on glucose of 0.176 ± 0.006 g g?1. The instantaneous yield realized the theoretical maximum for the majority of the fermentation. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号