首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kupffer cells are macrophages that are attached to the luminal surface or inserted in the endothelial lining of hepatic sinusoids. In this site, Kupffer cells play a key role in host defense by removing foreign, toxic and infective substances from the portal blood and by releasing beneficial mediators. Under some conditions, toxic and vasoactive substances also are released from Kupffer cells which are thought to play a role in a variety of liver diseases. Many of these activities may be modulated by the levels of gut derived endotoxin normally present in the portal blood. The ultrastructural aspects of Kupffer cell structure function in situ are best studied using perfused-fixed livers. In fixed livers, transmission and scanning electron microscopy reveal Kupffer cells during health to be irregular in shape with their exposed surfaces presenting numerous microvilli, filopodia, and lamellopodia. Long filopodia penetrate endothelial fenestrae to secure Kupffer cells to the sinusoid lining. Specific membrane invaginations known as worm-like bodies or vermiform processes are seen in the cytoplasm of Kupffer cells as are numerous endocytotic vesicles and lysosomes which vary in density, shape and size. Sometimes, annulate lamellae connected to the rough endoplasmic reticulum also are found. The principal endocytic mechanisms of Kupffer cells are phagocytosis of particulates and cells, and bristle-coated micropinocytosis for fluid-phase endocytosis of smaller substances. Many of these events are mediated by specific receptors. In some species, Kupffer cells can be distinguished from other sinusoidal lining cells and monocytes by specific cytoplasmic staining or monoclonal antibodies. Kupffer cells have been shown to be of monocytic origin as well as having the capacity for self-replication.  相似文献   

2.
Liver endothelial cells form a continuous lining of the liver capillaries, or sinusoids, separating parenchymal cells and fat-storing cells from sinusoidal blood. Liver sinusoidal endothelial cells differ in fine structure from endothelial cells lining larger blood vessels and from other capillary endothelia in that they lack a distinct basement membrane and also contain open pores, or fenestrae, in the thin cytoplasmic projections which constitute the sinusoidal wall. This distinctive morphology supports the protective role played by liver endothelium, the cells forming a general barrier against pathogenic agents and serving as a selective sieve for substances passing from the blood to parenchymal and fat-storing cells, and vice versa. Sinusoidal endothelial cells, furthermore, significantly participate in the metabolic and clearance functions of the liver. They have been shown to be involved in the endocytosis and metabolism of a wide range of macromolecules, including glycoproteins, lipoproteins, extracellular matrix components, and inert colloids, establishing endothelial cells as a vital link in the complex network of cellular interactions and cooperation in the liver. Fine structural studies in combination with the development of cell isolation and culture techniques from both experimental animal and human liver have greatly contributed to the elucidation of these endothelial cell functions. Morphological and biochemical investigations have both revealed little changes with age except for an accumulation of iron ferritin and a decrease in the activities of glucose-6-phosphatase, Mg-ATPase, and in glucagon-stimulated adenylcyclase. Future studies are likely to disclose more fully the role of sinusoidal endothelial cells in the regulation of liver hemodynamics, in liver metabolism and blood clearance, in the maintenance of hepatic structure, in the pathogenesis of various liver diseases, and in the aging process in the liver.  相似文献   

3.
Broiler chicken and laying hen livers were fixed using a simple technique of in situ puncture perfusion of cacodylate-buffered fixative, which allowed characterisation of the fine structure of hepatic parenchyma, hepatocytes, bile ductules, and, in particular, the sinusoidal cells including endothelial, Kupffer, and Ito cells. Sinusoidal endothelial cells with their bulging perinuclear cytoplasm, evident in both transmission and scanning electron micrographs, were easily distinguishable from Kupffer cells, which possessed numerous pseudopodia. Bile ductular epithelium and hepatocytes of the laying hens contained large amounts of lipid. The ultrastructural characteristics of intercalated cells (putative extra-sinusoidal macrophages of chicken liver) are described and their possible role as precursors of Kupffer cells is discussed.  相似文献   

4.
Phagocytosis of apoptotic cells by liver: a morphological study   总被引:4,自引:0,他引:4  
The present review deals with the morphological features of the removal of apoptotic cells by liver. The engulfment of cells undergoing apoptosis can be considered a specialized form of phagocytosis, playing a major role in the general tissue homeostasis in physiological and pathological conditions. In fact, defects of phagocytosis of apoptotic cells might have deleterious consequences for neighboring healthy cells, i.e., pathogenesis of inflammatory disease or dysregulation of the immune system. Phagocytosis of apoptotic cells by liver is a complex phenomenon, involving multiple molecular mechanisms of recognition (i.e., lectin-like receptors and receptors for externalized phosphatydilserine) of both parenchymal (hepatocytes) and nonparenchymal (Kupffer and endothelial cells) liver cells, often operating in cooperation. The data discussed in the present review are drawn from studies of phagocytosis of apoptotic cells in the liver, carried out with in vivo and in situ adhesion experiments as well as in vitro assays. Our results indicate that the three main liver cell types (hepatocytes, Kupffer, and endothelial cells) are able to recognize and internalize apoptotic cells by means of specific receptors (galactose and mannose-specific receptor; receptor for phosphatydilserine) and by cytoskeletal reorganization that favors the engulfment of the apoptotic cells. The "flags" for the identification of apoptotic cells by the liver are modifications of the surface of dead cells, i.e., sugar residues and phosphatydilserine exposition. Vitronectin receptor is not involved in such a recognition. The adhesions between modified cell surfaces of apoptotic cells and phagocytes generate cytoplasmatic signaling pathways that drive apoptotic cells to their final fate within the phagocytes (i.e., lysosomal digestion).  相似文献   

5.
A major challenge of cancer biology is to visualize the dynamics of the metastatic process in secondary organs at high optical resolution in vivo real-time. Here, we presented intravital, dual-colored imaging of liver metastasis formation from a single cancer cell to metastatic colonies in the living liver of living mice using two photon laser scanning microscopy (TPLSM). Red fluorescent protein expressing murine (SL4) or human (HT29) colorectal cancer cell lines were inoculated to the spleen of green fluorescent protein expressing mice. Intravital TPLSM was performed by exteriorizing and fixing the liver lobe of living mice. This was repeated several times for the long-term imaging of the same mouse. Viable cancer cells in the living liver of living mice were visualized intravitally at a magnification of over 600×. Single cancer cells were arrested within hepatic sinusoids 2 h after injection. Platelet aggregation surrounding a cancer cell was observed, indicating a phenomenon of tumor-cell induced platelet aggregation. Cancer cells were extravasated from hepatic sinusoids to the space of Disse. Protrusions of Kupffer cells surrounding a cancer cell were observed, indicating that Kupffer cells appear to phagocytose cancer cells. SL4 cells formed liver metastatic colonies with extensive stromal reaction. Liver metastases by HT29 cells were observed as a cluster of micrometastatic nodules. High-resolution, dual-colored, real-time visualization of cancer metastasis using intravital TLPSM can help to understand spatiotemporal tumor-host interactions during metastatic processes in the living organs of living animals.  相似文献   

6.
The present paper reviews the literature on the ultrastructure and function of sinusoidal fat-storing cells and pit cells in the mammalian liver. Ultrastructurally, fat-storing cells are characterized by the presence of cytoplasmic fat droplets, well developed rough endoplasmic reticulum; a Golgi complex; multivesicular bodies; one or two centrioles; and few, rather small, lysosomes. These lysosomes are sometimes associated with fat droplets. Fat-storing cells may bear a cilium and project characteristic cytoplasmic processes into the space of Disse. These processes contain microtubules and filaments. Fat-storing cells are the main storage site of retinol esters in the mammalian body. Moreover, these cells have the potential of synthesizing several connective tissue components including the collagens type I, III, and IV; fibronectin; laminin; heparan sulfate; chondroitin sulfate; and dermatan sulfate. Pit cells are polarized cells, with most organelles localized at one site of the nucleus near the cytocentre. They are characterized electron microscopically by the presence of dense cytoplasmic granules with a specific ultrastructure, by rod-cored vesicles, and by multivesicular bodies. It has recently been shown that pit cells have natural killer activity to certain tumor cells and have many features in common with large granular lymphocytes. They therefore may act in the liver as a first line of defense against neoplasia, metastasis, and viral infections.  相似文献   

7.
Amphibia Kupffer cells (i.e., liver resident macrophages) show many common characteristics when compared with Mammalia Kupffer cells: filopodia, microvillous-like structures, lamellipodia, fuzzy coat, coated vesicles, bristled vacuoles, nonspecific esterase activity, and pinocytotic and phagocytic activity are present both in Amphibia and Mammalia Kupffer cells. On the other hand, some differences are present between Kupffer cells of both zoological classes: phagocytosed red cells and their derivatives, iron-protein complexes, and lipofuscin bodies are normally present in Amphibia Kupffer cells, but absent in the same cells of healthy mammals. Worm-like structures are not seen in Amphibia and endogenous peroxidase activity is very weak in these animals compared with Mammalia. The most important difference lies in the ability of Amphibia Kupffer cells to produce melanins: in fact the tyrosinase gene is expressed, "melanosome centers" are present, and dopa oxidase activity is demonstrable.  相似文献   

8.
Objective: To explore how morphometry can minimize subjectivity in the assessment of liver nodules in cirrhosis using a novel classification tool. Study design: Ten hepatocellular carcinoma (HCC), 6 large regenerative nodules (LRN), and 34 regenerative (cirrhotic) nodules (RN), obtained from cirrhotic explant livers, were analyzed using a Kontron‐Zeiss KS400 image analyzer. We generated a morphometric model based on the analysis of volume fractions occupied by hepatocyte nuclei/cytoplasm, sinusoidal endothelium and lumen, neoplastic acini, fibrosis, centrilobular veins, portal arteries, veins and bile ducts, individual lesional arteries (smooth muscle actin), and capillarized sinusoids (CD34), and on surface fraction occupied by reticulin, and number in unit volume and size distribution of hepatocyte nuclei, and mean hepatocyte nucleus diameter and volume. Results: Volume fraction of capillarized sinusoids and of individual lesional arteries were more prominent in HCC and LRNs, when compared with RN, whereas surface fraction of reticulin was markedly decreased in HCC. The morphometric values of these three features were integrated into our classification tool to construct a hybrid system, which reclassified the nodules in the same categories. Conclusion: Our novel hybrid classification tool may minimize subjectivity in the histological assessment of nodular lesions in cirrhosis. Microsc. Res. Tech., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Gap junction channels, formed by connexins (Cx), are involved in the maintenance of tissue homeostasis, cell growth, differentiation, and development. Several studies have shown that Cx43 is involved in the control of wound healing in dermal tissue. However, it remains unknown whether Cx43 plays a role in the control of liver fibrogenesis. Our study investigated the roles of Cx43 heterologous deletion on carbon tetrachloride (CCl4)‐induced hepatic fibrosis in mice. We administered CCl4 to both Cx43‐deficient (Cx43+/?) and wild‐type mice and examined hepatocellular injury and collagen deposition by histological and ultrastructural analyses. Serum biochemical analysis was performed to quantify liver injury. Hepatocyte proliferation was analyzed immunohistochemically. Protein and messenger RNA (mRNA) expression of liver connexins were evaluated using immunohistochemistry as well as immunoblotting analysis and quantitative real‐time PCR. We demonstrated that Cx43+/? mice developed excessive liver fibrosis compared with wild‐type mice after CCl4‐induced chronic hepatic injury, with thick and irregular collagen fibers. Histopathological evaluation showed that Cx43+/? mice present less necroinflammatory lesions in liver parenchyma and consequent reduction of serum aminotransferase activity. Hepatocyte cell proliferation was reduced in Cx43+/? mice. There was no difference in Cx32 and Cx26 protein or mRNA expression in fibrotic mice. Protein expression of Cx43 increased in CCl4‐treated mice, although with aberrant protein location on cytoplasm of perisinusoidal cells. Our results demonstrate that Cx43 plays an important role in the control and regulation of hepatic fibrogenesis. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Rat liver sinusoidal endothelial cells (LEC) contain fenestrae, which are clustered in sieve plates. Fenestrae control the exchange of fluids, solutes and particles between the sinusoidal blood and the space of Disse, which at its back side is flanked by the microvillous surface of the parenchymal cells. The surface of LEC can optimally be imaged by scanning electron microscopy (SEM), and SEM images can be used to study dynamic changes in fenestrae by comparing fixed specimens subjected to different experimental conditions. Unfortunately, the SEM allows only investigation of fixed, dried and coated specimens. Recently, the use of atomic force microscopy (AFM) was introduced for analysing the cell surface, independent of complicated preparation techniques. We used the AFM for the investigation of cultured LEC surfaces and the study of morphological changes of fenestrae. SEM served as a conventional reference.
AFM images of LEC show structures that correlate well with SEM images. Dried-coated, dried-uncoated and wet-fixed LEC show a central bulging nucleus and flat fenestrated cellular processes. It was also possible to obtain height information which is not available in SEM. After treatment with ethanol or serotonin the diameters of fenestrae increased (+6%) and decreased (−15%), respectively. The same alterations of fenestrae could be distinguished by measuring AFM images of dried-coated, dried-uncoated and wet-fixed LEC. Comparison of dried-coated (SEM) and wet-fixed (AFM) fenestrae indicated a mean shrinkage of 20% in SEM preparations. In conclusion, high-resolution imaging with AFM of the cell surface of cultured LEC can be performed on dried-coated, dried-uncoated and wet-fixed LEC, which was hitherto only possible with fixed, dried and coated preparations in SEM and transmission electron microscopy (TEM).  相似文献   

11.
Investigating rare cellular events is facilitated by studying thick sections with confocal laser scanning microscopy (CLSM). Localization of cells in tissue sections can be done by immunolabelling or by fluorescent labelling of cells prior to intravenous administration. Immunolabelling is technically complicated because of the preservation of antigens during fixation and the problems associated with the penetration of the antibodies. In this study, an alternative and simple approach for the labelling of cells in vitro with the fluorescent probe DiO and its subsequent application in vivo will be outlined. The method was applied to trace DiO‐labelled colon carcinoma cells (CC531s) in 100 µm thick liver sections. In vitro and in vivo experiments revealed that DiO‐labelling of CC531s cells had no cytotoxic or antiproliferative effect and the cells preserved their susceptibility towards hepatic NK cells or Kupffer cells. In addition, DiO remained stable for at least 72 h in the living cell. DiO‐labelled CC531s cells could be traced all over the tissue depth and anti‐metastatic events such as phagocytosis of tumour cells by Kupffer cells could be easily observed. In situ staining with propidium iodide (nucleic acids) or rhodamine‐phalloidin (filamentous actin) resulted in additional tissue information. The data presented improved the understanding of the possible effects of the vital fluorescent probe DiO on cell function and provided a limit of confidence for CLSM imaging of DiO‐labelled cells in tissue sections.  相似文献   

12.
Term and preterm cervical ripening and dilatation have similarities with an inflammatory reaction. Since cell adhesion molecules are involved in this process, investigations on the expression of intercellular adhesion molecule-1, endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1, and platelet endothelial cell adhesion molecule in the lower uterine segment and in vitro experiments on human umbilical vein endothelial cells were performed. In addition, current reports on expression of endothelial adhesion molecules by the uterine cervix were summarized. Cell adhesion molecule expression by lower uterine segment and uterine cervix in term and preterm parturition was measured using immunohistochemistry, enzyme immunoassay, and Northern blot analysis. Regulation of adhesion molecule expression was evaluated in vitro by indirect immunofluorescence and flow cytometry using human umbilical vein endothelial cells. Investigations in term parturition revealed that intercellular adhesion molecule-1, endothelial leukocyte adhesion molecule-1, and vascular cell adhesion molecule-1 expression increases during parturition. In preterm labor, the expression of endothelial leukocyte adhesion molecule-1 and intercellular adhesion molecule-1 in the lower uterine segment increased. Expression of platelet endothelial cell adhesion molecule did not change in term and preterm parturition. Expression of adhesion molecules was localized mainly on lower uterine segment vascular endothelial cells and to a smaller extent on leukocytes. In vitro experiments showed that expression of adhesion molecules by human umbilical vein endothelial cells can be stimulated by tumor necrosis factor-alpha, 17beta-estradiol, prostaglandin E(2), and the antigestagen onapristone. Progesterone exerted no stimulatory effect. Cervical ripening and dilatation during term and preterm parturition are associated with an increased expression of endothelial cell adhesion molecules by lower uterine segment and uterine cervix. The expression can be modulated by pro-inflammatory cytokines, sex hormones, and prostaglandin E(2). Mechanisms controlling the extravasation of leukocytes may play a fundamental role in term and preterm parturition.  相似文献   

13.
Leishmaniosis is an anthropozoonosis caused by an intracellular protozoan parasite that causes a wide spectrum of diseases in humans and dogs worldwide. In the Mediterranean basin, Portugal, Central and South America, and in the Middle East, visceral leishmaniosis is caused by Leishmania infantum. In these areas, dogs are believed to be the natural reservoirs of this parasite. In the case of visceral leishmaniosis, the spleen is one of the several hematopoietic and immunocompetent organs involved. Since this viscera is a blood filter, the authors investigated the expression of the morphological and microvascular environment and modifications of the spleen cell population related to immunological responses to this parasitic condition. The tools used to perform this study were scanning electronic microscopy of intact tissue and corrosion casts, transmission electronic microscopy, histology and immunohistochemistry. The results reveal three important modifications concerning the spleen's microvascular architecture when compared with its normal pattern, independently of the serological titer obtained with indirect immunofluorescence. (1) A marked scarcity of the sinusoidal system sheet that surrounds the central artery/arteriole of the white pulp; (2) A huge development of pulp venules and veins; (3) The presence of a surprising development of reticular fibers. The authors postulate that independent of the virulence of the parasite involved and the type of immunity prevalent in a particular host, the spleen develops blood dynamic conditions that permit reduction in the speed of blood flow so that cells involved in immunological processes can proliferate and differentiate, and also contributes to trapping lymphocytes within the area through the differentiation of characteristics that resemble those of HEV endothelial cells.  相似文献   

14.
Endothelium and valvular diseases of the heart   总被引:3,自引:0,他引:3  
It has become increasingly evident that the endothelium plays a critical role in the pathogenesis of valvular heart disease. The endothelium helps regulate vascular tone, inflammation, thrombosis, and vascular remodeling. Dysfunction of the endothelial cells has been linked to many vascular disorders including atherosclerosis. Common valvular diseases such as senile degenerative valve disease, myxomatous (or floppy) valves, rheumatic valves, and infective endocarditis valves show changes in the synthetic, morphologic, and metabolic functions of the valvular endothelial cells. These diseases are active processes related to endothelial cell dysfunction. Endothelial cell dysfunction is caused by mechanical forces, bacterial infection, autoantibodies, and circulating modulators of endothelial cell function. This study reviews the role of endothelial cell dysfunction in the more common valvular diseases. Continued research on endothelial cell dysfunction is crucial to our understanding of valvular heart diseases and may elucidate novel treatment and prevention strategies.  相似文献   

15.
Background: Activated hepatic stellate cells (HSCs) are closely involved in the initiation, perpetuation, and resolution of liver fibrosis. Pro-inflammatory cytokine levels are positively correlated with the transition from liver injury to fibrogenesis and contribute to HSC pathophysiology in liver fibrosis. Methods: In this study, we investigated the effect of the pro-inflammatory cytokine interleukin (IL)-1β on the proliferation and signaling pathways involved in fibrogenesis in LX-2 cells, an HSC cell line, using western blotting and cell proliferation assays. Results: IL-1β increased the proliferation rate and α-smooth muscle actin (SMA) expression of LX-2 cells in a dose-dependent manner. Within 1 h after IL-1β treatment, c-Jun N-terminal kinase (JNK), p38, and nuclear factor-κB (NF-κB) signaling was activated in LX-2 cells. Subsequently, protein kinase B (AKT) phosphorylation and an increase in α- SMA expression were observed in LX-2 cells. Each inhibitor of JNK, p38, or NF-κB decreased cell proliferation, AKT phosphorylation, and α-SMA expression in IL-1β-treated LX-2 cells. Conclusion: These results indicate that JNK, p38, and NF-κB signals converge at AKT phosphorylation, leading to LX-2 activation by IL-1β. Therefore, the AKT signaling pathway can be used as a target for alleviating liver fibrosis by the inflammatory cytokine IL-1β.  相似文献   

16.
Hepatic stellate cells (HSCs) are the primary effector cells in liver fibrosis. In the normal liver, HSCs serve as the primary vitamin A storage cells in the body and retain a “quiescent” phenotype. However, after liver injury, they transdifferentiate to an “activated” myofibroblast-like phenotype, which is associated with dramatic upregulation of smooth muscle specific actin and extracellular matrix proteins. The result is a fibrotic, stiff, and dysfunctional liver. Therefore, understanding the molecular mechanisms that govern HSC function is essential for the development of anti-fibrotic medications. The actin cytoskeleton has emerged as a key component of the fibrogenic response in wound healing. Recent data indicate that the cytoskeleton receives signals from the cellular microenvironment and translates them to cellular function—in particular, increased type I collagen expression. Dynamic in nature, the actin cytoskeleton continuously polymerizes and depolymerizes in response to changes in the cellular microenvironment. In this viewpoint, we discuss the recent developments underlying cytoskeletal actin dynamics in liver fibrosis, including how the cellular microenvironment affects HSC function and the molecular mechanisms that regulate the actininduced increase in collagen expression typical of activated HSCs.  相似文献   

17.
The complex mechanism of degenerative diseases and the non-specific modulation of regenerative targets are topics that need to be elucidated in order to advance the use of stem cells in improvement of neurodegenerative diseases. From pre-transplantation through post-transplantation, there are many changes in the conditions, both inside and outside of the stem cells that have not been carefully considered. This has hindered development in the field of cell therapy and regeneration. This viewpoint highlights the potential implications of intracellular and extracellular alterations of stem cells in transplanted areas at risk of neurodegenerative disease.  相似文献   

18.
The aim of this study is to evaluate the effect of curcumin in protecting against selenium‐induced toxicity in liver and kidney of Wistar rats. Light microscopy evaluation of selenium alone administered rats showed liver to be infiltrated with mononuclear cells, vacuolation, necrosis, and pronounced degeneration. Control liver sections showed a regular morphology of parenchymal cells with intact hepatocytes and sinusoids. Kidney from selenium alone administered rats showed vacuolar degeneration changes in the epithelial cells, cellular proliferation with fibrosis, thickening of capillary walls, and glomerular tuft atrophy. Such changes were also observed in rats administered with selenium and curcumin simultaneously and rats administered first with selenium and then curcumin 24 h later. Interestingly, such degenerative changes observed in liver and kidney induced by selenium were not seen in rats that were administered with curcumin first and selenium 24 h later. This clearly suggests the protective nature of curcumin against selenium toxicity. To understand the probable mechanism of action of curcumin, we analyzed inducible nitric oxide synthase (iNOS) expression by immunohistochemistry, and the results showed an increased iNOS expression in selenium‐alone induced liver and kidney. Such high iNOS levels were inhibited in liver and kidney of rats pretreated with curcumin and then with selenium 24 h later. Based on the histological results, it can be concluded that curcumin functions as a protective agent against selenium‐induced toxicity in liver as well as kidney, and this action is probably by the regulatory role of curcumin on iNOS expression. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Detrimental immune response has a crucially important role in the development and progression of inflammatory eye diseases. Inflammatory mediators and proteolytic enzymes released by activated immune cells induce serious injury of corneal epithelial cells and retinal ganglion cell which may result in the vision loss. Mesenchymal stem cells (MSCs) are regulatory cells which produce various immunosuppressive factors that modulate phenotype and function of inflammatory immune cells. However, several safety issues, including undesired differentiation and emboli formation, limit clinical use of MSCs. MSC-derived exosomes (MSC-Exos) are nano-sized extracellular vesicles which contain all MSC-derived immunoregulatory factors. Intraocular administration of MSC-Exos efficiently attenuated eye inflammation and significantly improved visual acuity in experimental animals without causing any severe side effects. As cell-free product, MSC-Exos addressed all safety issues related to the transplantation of MSCs. Therefore, MSC-Exos could be considered as potentially new remedy for the treatment of inflammatory eye diseases which efficacy should be explored in up-coming clinical trials.  相似文献   

20.
Chronic liver diseases' hallmark is the fibrosis that results in liver function failure in advanced stages. One of the serious parasitic diseases affecting the liver tissues is schistosomiasis. Immunologic reactions to Schistosoma eggs leads to accumulation of collagen in the hepatic parenchyma causing fibrosis. Thus, monitoring and reporting the staging of the histopathological information related to liver fibrosis are essential for accurate diagnosis and therapy of the chronic liver diseases. Automated assessment of the microscopic liver tissue images is an essential process. For accurate and timeless assessment, an automated image analysis and classification of different stages of fibrosis can be employed as an efficient procedure. In this work, granuloma stages, namely cellular, fibrocellular, and fibrotic granulomas along with normal liver samples were classified after features extraction. In this work, a new hybrid combination of statistical features with empirical mode decomposition (EMD) is proposed. These combined features are further classified using the back‐propagation neural network (BPNN). A comparative study of the used classifier with the support vector machine is also conducted. The comparative results established that the BPNN achieved superior accuracy of 98.3% compared to the linear SVM, quadratic SVM, and cubic SVM that provided 85%, 84%, and 80%; respectively. In conclusion, this work is of special value that provides promising results for early prediction of the liver fibrosis in schistosomiais and other fibrotic liver diseases in no time with expected better prognosis after treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号