首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Devolatilization and char burning were studied in an electrically heated bench-scale fluidized-bed reactor at 750 to 900°C bed temperature, gas oxygen mole fractions ranging from zero to 0.21, superficial gas velocities from 0.3 to 0.7 m/s and coal particle diameters 5 to 35 mm. The coals investigated include lignite, bituminous and anthracite. The coal devolatilization and char burning times, H/C ratio histories, and particle fragmentation were measured. Statistical correlations with the operating variables were developed for the devolatilization time. A mathematical model is given for the combustion of char. Most predictions of the model agree quite well with the experimental results.  相似文献   

2.
The aim of the present research was to test a mathematical model of coal devolatilization. Verification of the thermal conductivity, specific heat capacity and endothermic heat of pyrolysis was carried out by measurement of the coal particle temperature at the outer surface and in the center of the particle. The model, with recommended thermal and transport data, was then tested on the basis of gaseous products generation rates and total mass loss during experiments with coal granules of size 4-20 mm and coal grains 0.08-5 mm dropped into a hot fluidized bed.  相似文献   

3.
Analysis of devolatilization of predried large coal particles in fluidized beds requires consideration of both the chemical kinetics of coal decomposition and transport processes. Models available either assume the devolatilization particle to be isothermal (whereas it may be shown that, in general, large temperature gradients may exist within the particle) or require extensive numerical integration procedures. This Paper describes a model which permits formulation of analytical and easy-to-use equations for the estimation of the devolatilization history of a large predried coal particle in a fluidized bed. The model predictions are compared with experimental data collected for Mississippi lignite. A correlation is proposed for the estimation of the total devolatilization time. The analytical solutions presented may be used with ease in coupling the devolatilization process to the other phenomena, such as drying and/or combustion of volatiles and residual char, occuring during fluidized bed combustion of coal.  相似文献   

4.
John F. Stubington 《Fuel》1984,63(7):1013-1019
Coal particles with diameters of 3–11 mm were injected into a small, hot bed of sand fluidized by nitrogen. Volatiles evolution was followed by sampling the exit gas stream and subsequent analysis by gas chromatography. Three Australian coals covering a range of volatile matter were studied and the effects of coal particle size and bed temperature were determined. The yields of gaseous components, char and tar are explained by consideration of the competitive reactions for coal hydrogen and oxygen and secondary reactions of the volatile species within the coal particle. The pore structure developed during devolatilization has a significant effect on the extent of these secondary reactions. It is concluded that heat transfer is the main process controlling the volatilization time in fluidized bed combustors. The time required for heat transfer into the coal particle, determined by calculation and experiment, agrees with the measured volatilization time. Significant factors are external heat transfer to the surface of the particle, internal conduction through the coal substance and radiation through the pores, and the counterflow of volatiles out of the coal particle. For different coals, variations in the volatilization time appear to be caused by the development of different pore structures, which affect radiant heat transfer through the pores.  相似文献   

5.
A model for the devolatilization of coal in a non-combusting fluidized bed is proposed. Previous studies have either considered devolatilization as a non-rate process or assumed the devolatilization coal particle as isothermal. The assumption of an isothermal particle requires the heat transfer Biot number ?0.02. In view of the larger Biot numbers predicted using existing fluidized bed gas-solid heat exchange correlations and reported values for thermophysical properties, the present model considers the devolatilizing particle to be, in general, non-isothermal. The temperature profiles are computed from the analytical solution of the one-dimensional spherical coordinate unsteady heat transport equation with a convective boundary condition. The temperatures are then used in the non-isothermal coal decomposition kinetic expression proposed by Anthony et al., integrated over the particle to obtain the fractional volume average devolatilization at any given time. Parametric studies show a chemical kinetics controlled regime for small particles, a heat transfer controlled regime for larger particles and a mixed regime for intermediate particle sizes. The extent of the mixed regime depends on the type of coal as well as the operating conditions. The model results are also compared with the fluidized CH4 and CO evolution data reported in the literature for various particle sizes and different temperatures.  相似文献   

6.
Oxygen-enriched air can increase the combustion efficiency, boiler efficiency, and sulfur absorption efficiency of atmospheric fluidized bed combustion (AFBC) boilers which use high-sulfur coal, and other combustion systems that use coal. Devolatilization is the first step in the gasification or combustion of coal. In this work, devolatilization characteristics of five run-of-mine (ROM) coals of North-Eastern India having particle-size between 4 mm and 9 mm are reported. The experiments were performed under fluidized bed conditions at 1123 K in enriched air containing 30% oxygen. The devolatilization time was correlated with the particle diameter by a power law correlation. The variation of mass with time was correlated by an exponential correlation. It was observed that the average ratio of yield of volatile matter to the proximate volatile matter decreased with the increase in volatile-content of the coals. A shrinking-core model was used to determine the role of film-diffusion, ash-diffusion and chemical reaction. The experimental results indicate the likelihood of film-diffusion to be the rate-controlling mechanism in presence of oxygen-enriched air. A cost-analysis was carried out to study the economy of the process.  相似文献   

7.
《Fuel》1987,66(5):717-721
The devolatilization characteristics of single coal particles were studied experimentally for both combustion in air and pyrolysis in nitrogen. The rate constant in volatile matter combustion was 2–3 times larger than that in volatile matter pyrolysis. The weight loss during the devolatilization in nitrogen gas agreed with the value of proximate analysis. However, in the case of coal combustion, the weight loss during the volatile matter combustion region exceeded the proximate value because the particle temperature became high compared with the surrounding gas temperature.  相似文献   

8.
The characterization of volatile matter (VM) release from solid fuel particles during fluidized‐bed combustion/gasification is relevant to the assessment of the reactor performance, as devolatilization rate affects in‐bed axial fuel segregation and VM distribution across the reactor. An experimental technique for the characterization of the devolatilization rate of solid fuels in fluidized beds is proposed. It is based on the analysis of the time series of pressure measured in a bench‐scale fluidized‐bed reactor as VM is released from a batch of fuel particles. A remarkable feature of the technique is the possibility to follow fast devolatilization with excellent time‐resolution. A mathematical model of the experiment has been developed to determine the time‐resolved devolatilization rate, the devolatilization time and the volume‐based mean molecular weight of the emitted volatile compounds. Devolatilization kinetics has been characterized for different solid fuels over a broad range of particle sizes. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

9.
M. Sreekanth  Ajit Kumar Kolar 《Fuel》2010,89(5):1050-1055
This work presents the results of experiments conducted to determine the mass loss characteristics of a cylindrical wood particle undergoing devolatilization under oxidation conditions in a bubbling fluidized bed combustor. Cylindrical wood particles having five different sizes ranging from 10 to 30 mm and aspect ratio (l/d = 1) have been used for the study. Experiments were conducted in a lab scale bubbling fluidized bed combustor having silica sand as the inert bed material and air as the fluidizing medium. Total devolatilization time and mass of wood/char at different stages of devolatilization have been measured. Studies have been carried out at three different bed temperatures (Tbed = 750, 850 and 950 °C), two inert bed material sizes (mean size dp = 375 and 550 μm) and two fluidizing velocities (u = 5umf and u = 10umf). Devolatilization time is most influenced by the initial wood size and bed temperature. Most of the mass is lost during the first half of the devolatilization process. There was no clear influence of the fluidization velocity and bed particle size on the various parameters studied. The apparent kinetics estimated from the measured mass history show that the activation energy varied narrowly between 15 and 27 kJ/mol and the pre-exponential factor from 0.11 and 0.45 s−1 for the wood sizes considered.  相似文献   

10.
Single particle devolatilization followed by combustion of the residual coal char particle has been analyzed in a batch-fluidized bed. The kinetic scheme with distributed activation energy is used for coal devolatilization while multiple chemical reactions with volume reaction mechanism are considered for residual char combustion. Both the models couple kinetics with heat transfer. Finite Volume Method (FVM) is employed to solve fully transient partial differential equations coupled with reaction kinetics. The devolatilization model is used to predict the devolatilization time along with residual mass and particle temperature, while the combined devolatilization and char combustion model is used to predict the overall mass loss and temperature profile of coal. The computed results are compared with the experimental results of the present authors for combustion of Indian sub-bituminous coal (15% ash) in a fluidized bed combustor as well as with published experimental results for coal with low ash high volatile matter. The effects of various operating parameters like bed temperature, oxygen mole fraction in bulk phase on devolatilization time and burn-out time of coal particle in bubbling fluidized bed have been examined through simulation.  相似文献   

11.
A two-dimensional model is developed for the determination of devolatilization time and char yield of cylindrical wood particles in a bubbling fluidized bed combustor. By using the concept of shape factor, the model is extended to particles of cuboid shape. The model prediction of the devolatilization time agrees with the measured data (present and those reported in the literature) for cylindrical and cuboidal shaped particles within ±20% while the char yield is predicted within ±17%. Influence of some important parameters namely, thermal diffusivity, external heat transfer coefficient and shrinkage, on the devolatilization time and char yield are studied. Thermal diffusivity shows noticeable influence on devolatilization time. The external heat transfer coefficient shows little influence beyond a value of 300 W/(m2 K). However particle shrinkage shows negligible effect on the devolatilization time but has a significant influence on the char yield.  相似文献   

12.
The behaviour of very wet Victorian brown coal was examined in a bed of sand fluidized, at temperatures around 1000 K, with either air or nitrogen. Small batches of coal with a narrow particle size range were added to the 76 mm diameter bed and the times required for devolatilization and total combustion were recorded. Changes in particle water content, volatiles level and particle size distribution were also measured. All the particles tested, up to 8.4 mm in diameter, dried rapidly and remained substantially intact throughout carbonization and combustion. Devolatilization was complete after about 60 s but extensive freeboard combustion of volatiles was evident. The water content of the coal had very little influence on burnout time. Char combustion dominated the overall combustion process and took place under kinetic control with significant pore burning.  相似文献   

13.
Devolatilization of five coals having volatile matter in the range of 31 to 41% was studied in argon and in air under fluidized bed conditions. The diameter of the coal particles varied between 4 and 9.5 mm. The variation of devolatilization time with particle diameter was expressed by the correlation, tv = Advn. The superficial gas velocity was found to have a significant effect on the rate of devolatilization. The devolatilization rate increased with the increase in the oxygen concentration in the fluidizing gas. The correlations developed in this study fitted the mass versus time profiles of the coal particles satisfactorily. The same correlations were found to be appropriate for predicting devolatilization of a batch of coal particles. The correlations developed in the present study will be useful for the design of fluidized bed combustors.  相似文献   

14.
利用微型流化床加热速度快、温度分布均匀以及气体近平推流等优势,在直径20 mm自动控温的微型流化床反应分析仪中研究了粒度分布为1.7~3.35 mm和0.12~0.23 mm两种典型尺寸燃煤颗粒在790~900℃温度范围内的富氧燃烧行为。通过快速响应过程质谱对燃烧产生的烟气进行实时监测,成功地识别和记录了粗颗粒燃烧过程中经历的挥发分燃烧和原位新生半焦燃烧两个主要阶段。挥发分析出速度最快,然后快速燃烧,而半焦燃烧速度较慢。相比之下,细颗粒燃烧的这两个阶段具有几乎相同的速率,因而相互耦合而难以区分。根据实验结果,挥发分析出和燃烧为快速反应,煤颗粒燃烧过程速率受原位新生半焦燃烧过程控制。进一步研究了挥发分和原位新生半焦燃烧动力学行为,获得其本征动力学的活化能分别为107.2和143.9 kJ/mol。  相似文献   

15.
Behavior of ignition and combustion of coal particle cluster under a quiescent condition was numerically simulated by solving balance equations of mass and enthalpy with combustion kinetic models of volatiles and char. Two-flame structure, one flame penetrating into the cluster and the other moving out of the cluster, was predicted during the combustion of coal particle cluster. Effects of radiative heat transfer, group number, ambient temperature, coal particle size, and oxygen concentration on ignition and combustion of coal particle clusters were also analyzed. Simulations indicated that the gas volume fraction of coal particle cluster increases with time after devolatilization. Gas velocity passing through the cluster surface varied significantly at volatile liberation. The ignition time delay was reduced with the increase of ambient temperature. The cluster devolatilization rate and char burning rate increased while the ignition time delay decreased with the increase of ambient oxygen concentration.  相似文献   

16.
Results are presented for gasification of coal and char by means of air or air-steam mixtures in fluidised bed reactors of three different volumes. Two sizes of coal feedstock particles, 0.5-1.0 mm and 1.0-1.5 mm, and one size of char particles, 0.5-1.5 mm, were used. The calorific value of generated gas and the carbon conversion are presented as a function of particle residence time. For coal gasification higher carbon conversion has been obtained at the same particle residence time than for char gasification. For the steam gasification, a lower gas heating value of about 4 MJ/m3 (S.T.P.) was obtained.  相似文献   

17.
The effects of devolatilization temperature (750-900 °C), coal size (2-12 mm) and coal properties (carbon content, Hardgrove index (HGI), pore volume) of anthracite coals on the primary fragmentation and particle size reduction during devolatilization have been determined in a thermobalance reactor. The fragmentation index increases with increasing devolatilization temperature and particle size. The fragmentation index is also influenced by coal properties, such as carbon content, HGI, pore volume, etc. Thus, the reduction ratio of particle size before and after devolatilization increases with increasing devolatilization temperature and particle size.  相似文献   

18.
在冷态模拟实验和煤热解动力学计算的基础上,对粉煤气体热载体快速热解提升管反应器的高度进行了计算。利用高速摄像粒子测速法结合互相关算法研究了不同气体流量和不同颗粒粒径时固体颗粒在热解提升管中的运动速度,通过求解神府煤热解动力学方程,得到了不同粒径神府煤颗粒热解挥发分析出的时间,从而确定了快速热解提升管反应器的高度。研究结果表明:当气体流量在850 m3/h,粉煤的粒径主要集中在0.7—3.0 mm时,提升管的高度应选择在10.0 m。  相似文献   

19.
在直径50mm的冷模流化床与固定床耦合反应器中,考察了活性炭颗粒在130~150℃及不同气速下的磨损情况,得到了不同气速下固定床中圆柱状颗粒的磨损率随时间的变化关系,同时分析了滞留在流化床、固定床及袋滤器中的细颗粒在不同气速下的粒径分布与质量分布.结果表明,颗粒在该耦合反应器中磨损严重,在0.212~0.424m/s气速下,固定床中颗粒质量损失可达3%~4%,流化床中颗粒平均粒径由200μm降至100μm以下.  相似文献   

20.
J.R. Bunt  F.B. Waanders 《Fuel》2009,88(4):585-594
The Sasol-Lurgi fixed-bed dry-bottom (FBDB) MKIV gasifiers are proven to be robust as far as acceptable coal properties are concerned, in particular its ability to accommodate a range of particle size distributions (PSD) fractions. Over the years, the findings from a number of studies conducted at Sasol have played a key role in the optimization of the Sasol-Lurgi gasifiers as far as the limited amount of coal preparation by crushing and screening is concerned. The continued optimization efforts by Sasol over many years have led to a robust and reliable gasification technology for coal conversion, and more improvements are envisaged for the near future.In this study, gasification profiles inside real coal beds were investigated experimentally using a pilot scale combustor unit (pipe reactor), where the top size of the coal blend was systematically reduced from 75 mm, 53 mm and 37.5 mm. The pilot scale combustor has an inside diameter of 400 mm, is approximately 3 m long and the combustion rate is controlled by regulating the oxygen/nitrogen ratio of the gas feed. Ash is not removed continuously, so the combustion front moves upwards through the coal bed with time, resulting in a temperature gradient across the bed. The combustion process can be stopped at any point in time by removing all of the oxygen from the feed gas (i.e. quenching with nitrogen). The combustor was constructed so that it can be tilted onto its side and opened up like a coffin to allow sample taking and visual inspection of the combustion profile. In this case, equivalent sized slices were taken across the length of the reactor bed contents and the samples were analysed for PSD, proximate analysis, ultimate analysis, Fisher assay and coal char CO2 reactivity. This paper focuses on the coal property transformational behaviour (as characterized by the proximate analysis and Fischer tar results) through packed coal beds of different feed coal size distributions.The proximate analysis results showed clear reaction zone profiles to be occurring within the pipe reactor, i.e. drying, pyrolysis, reduction and combustion (ash bed) zones, in agreement with the SL-FBDB MKIV commercial-scale findings. It was found that a decrease in feed coal particle size resulted in better heat transfer across the particles with ensuing faster volatile matter and tar evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号