首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innervations of inner and outer hair cells of the organ of Corti of the human cochlea were studied by serial section electron microscopy. At the base of inner hair cells, presumed afferent fibers were of varying size and demonstrated synaptic specialization consisting of a presynaptic body, vesicles, and asymmetrical synaptic membrane specialization. Two types of neurons, vesiculated presumably efferent and nonvesiculated presumably afferent, synapsed at the base of outer hair cells. The synaptic specialization of afferent fibers included presynaptic body, vesicles, and asymmetrical membrane thickening, whereas efferent synapses demonstrated presynaptic vesicles and a subsynaptic cisterna. Some presumably afferent nerve terminals formed a reciprocal synapse with outer hair cells in both the human and the chimpanzee. Such a synaptic relationship demonstrated morphologic specialization consistent with both hair cell-to-neuron and neuron-to-hair cell transmission between the same outer hair cell and nerve terminal. The innervation density of inner and outer hair cells and the comparative anatomy of the afferent and efferent innervation are discussed.  相似文献   

2.
Many aspects of the organization of the electromotor synapse of electric fish resemble the nerve-muscle junction. In particular, the postsynaptic membrane in both systems share most of their proteins. As a remarquable source of cholinergic synapses, the Torpedo electrocyte model has served to identify the most important components involved in synaptic transmission such as the nicotinic acetylcholine receptor and the enzyme acetylcholinesterase, as well as proteins associated with the subsynaptic cytoskeleton and the extracellular matrix involved in the assembly of the postsynaptic membrane, namely the 43-kDa protein-rapsyn, the dystrophin/utrophin complex, agrin, and others. This review encompasses some representative experiments that helped to clarify essential aspects of the supramolecular organization and assembly of the postsynaptic apparatus of cholinergic synapses.  相似文献   

3.
Large myelinated club ending and small-vesicle bouton synapses on the distal part of the lateral dendrite of the goldfish Mauthner cell were investigated with thin section, freeze-fracture, and immunocytochemical electron microscopic methods. Large myelinated club endings form mixed synapses, having both gap junctions and chemical synaptic junctions. The correlation of the number of gap junction particles (connexons) and the data from electrophysiological studies of single large myelinated club ending synapses suggest that only a small fraction of gap junction channels are open at any given time during electrical synaptic transmission. The chemical synaptic junctions at the large myelinated club ending synapse have large, round synaptic vesicles, indicating that they are excitatory. This result is in agreement with electrophysiological data demonstrating the excitatory nature of this chemical synapse. Freeze-fracture of these excitatory chemical synaptic junctions reveals the presence of the intramembrane particle aggregates in the postsynaptic E face. Small-vesicle boutons form chemical synaptic junctions with small, flat or oval synaptic vesicles. These structural data, in combination with previous electrophysiological studies, suggest that the small-vesicle bouton synapses are inhibitory. In support of this theory, the cytoplasmic side of the postsynaptic membrane of some of these synapses show positive immunocytochemical reaction to monoclonal antibodies against the rat glycine receptor. Freeze-fracture data reveal intramembrane particle aggregates in the postsynaptic P face of some small-vesicle bouton synapses which could possibly represent glycine receptor aggregates.  相似文献   

4.
Arthropod mechanosensory afferents have long been known to receive efferent synaptic connections onto their centrally located axon terminals. These connections cause presynaptic inhibition by attenuating the action potentials arriving at the axon terminals, thus reducing the synaptic potentials in the postsynaptic neurons. This type of inhibition can specifically reduce the excitation of selected postsynaptic neurons while leaving others unaffected. However, recent research has demonstrated that sensory signals detected by arthropod mechanosensory neurons can also be synaptically modulated before they ever arrive at the axon terminals. In arachnids and crustaceans, wide and complex networks of synapses on all parts of the afferent neurons, including the somata and dendrites, provide mechanisms to inhibit or enhance the responses to mechanical stimuli as they are being detected. This modulation will affect the signal transmission to all axonal branches and postsynaptic cells of the affected receptor neuron. In addition to the increased complexity of mechanosensory information transmission produced by these synapses, a variety of circulating neuroactive substances also modulate these neurons by acting on their postsynaptic receptors.  相似文献   

5.
Images of vesicle openings in the presynaptic membrane have regularly been shown to increase in number after stimulation of cholinergic nerves. However, with a very few exceptions, the occurrence of vesicle openings is delayed in time with respect to the precise moment of transmitter release. In contrast, a transient change in the size and distribution of intramembrane particles (IMPs) has constantly been found as a characteristic change affecting the presynaptic membrane in a strict time coincidence with the release of acetylcholine quanta. This is illustrated here in a rapid-freezing experiment performed on small specimens of the Torpedo electric organ during transmission of a single nerve impulse. A marked change affected IMPs in the presynaptic membrane for 3-4 ms, i.e., a population of IMPs larger than 10 nm momentarily occurred in coincidence with the passage of the impulse. The nicotinic receptors, abundantly visible in the postsynaptic membranes, also underwent very fleeting structural changes during synaptic transmission. In conclusion, for rapidly operating neurotransmitters like acetylcholine, a characteristic IMP change was regularly found to coincide in the presynaptic membrane with the production of neurotransmitter quanta, whereas images of vesicles fusion were either delayed or even dissociated from the release process. This is discussed in connection to the different modes of release recently described for other secreting systems.  相似文献   

6.
The Orthopteran central nervous system has proved a fertile substrate for combined morphological and physiological studies of identified neurons. Electron microscopy reveals two major types of synaptic contacts between nerve fibres: chemical synapses (which predominate) and electrotonic (gap) junctions. The chemical synapses are characterized by a structural asymmetry between the pre- and postsynaptic electron dense paramembranous structures. The postsynaptic paramembranous density defines the extent of a synaptic contact that varies according to synaptic type and location in single identified neurons. Synaptic bars are the most prominent presynaptic element at both monadic and dyadic (divergent) synapses. These are associated with small electron lucent synaptic vesicles in neurons that are cholinergic or glutamatergic (round vesicles) or GABAergic (pleomorphic vesicles). Dense core vesicles of different sizes are indicative of the presence of peptide or amine transmitters. Synapses are mostly found on small-diameter neuropilar branches and the number of synaptic contacts constituting a single physiological synapse ranges from a few tens to several thousand depending on the neurones involved. Some principles of synaptic circuitry can be deduced from the analysis of highly ordered brain neuropiles. With the light microscope, synaptic location can be inferred from the distribution of the presynaptic protein synapsin I. In the ventral nerve cord, identified neurons that are components of circuits subserving known behaviours, have been studied using electrophysiology in combination with light and electron microscopy and immunocytochemistry of neuroactive compounds. This has allowed the synaptic distribution of the major classes of neurone in the ventral nerve cord to be analysed within a functional context.  相似文献   

7.
In conventional freeze-fracture replicas, precise complementarity of membrane faces is seldom achieved. In a model system frequently used to evaluate replica quality, vertebrate gap junctions are usually visualized as patches of 8-10 nm P-face intramembrane particles separated by 1-2 nm spaces, while E-face images are represented by 4-6 nm conical pits separated by 5-7 nm wide membrane ridges. However, that disparity in sizes of particles versus pits, as well as the disparity in the widths of the spaces separating particles versus pits, suggests that a significant reduction in complementarity of membrane faces has occurred. In this investigation, a JEOL JFD-9000 freeze-etch machine was modified so that fracturing and replication could be performed at temperatures much colder than commonly employed. With the addition of cryopumps to improve overall vacuum and the installation of optically tight LN2-cooled shrouds surrounding the specimen and the knife, water vapor contamination arising from all sources within the vacuum chamber was reduced substantially, allowing replicas to be made at temperatures down to -185 degrees C. With the specimen at these much colder temperatures, water vapor released by the heat of cleaving was also reduced significantly, providing additional improvement in replica quality. In addition, with higher shadowing angles (greater than 60 degrees) and with the specimen at a much lower temperature, the grain size of the platinum film was noticeably reduced, thereby improving resolution at the molecular level. Under these improved conditions, replicas of rat liver gap junctions revealed that many of the P-face IMPs were tubes 6-7 nm in diameter, but that other IMPs had been stretched and distorted by the fracturing process. More important, however, these high resolution replicas revealed that the replicas of the E-face pits represented three-dimensional molecular casts of the transmembrane proteins comprising the connexon hexamer. This means that before they were replicated, the E-face pits faithfully maintained the shape that the IMPs had before fracturing. These more detailed images revealed a new structure in the center of each E-face pit: a 2-3 nm "peg" that may represent the frozen aqueous matrix of the connexon ion channel that remained after elastic extraction of the surrounding six connexin molecules. Thus, high-angle shadowing at very low specimen temperature under virtually non-contaminating conditions has revealed a new level of detail for membrane structure in freeze-fracture replicas.  相似文献   

8.
The afferent terminals of arthropod sensory neurones receive abundant input synapses, usually closely intermingled with the sites of synaptic output. The majority of the input synapses use the neurotransmitter GABA, but in some afferents there is a significant glutamatergic or histaminergic component. GABA and histamine shunt afferent action potentials by increasing chloride conductance. Though glutamate can also have this effect in the arthropod central nervous system, its action on afferent terminals appears to be mediated by increases in potassium conductance or by the action of metabotropic receptors. The action of the presynaptic synapses on the afferents are many and varied. Even on the same afferent, they may have several distinct roles that can involve both tonic and phasic patterns of primary afferent depolarisation. Despite the ubiquity and importance of their effects however, the populations of neurones from which the presynaptic synapses are made, remain largely unidentified.  相似文献   

9.
The afferent innervation pattern of inner hair cells in the apex of the guinea pig cochlea was studied using serial reconstruction of semithick (0.25–μm) sections and high-voltage electron microscopy (HVEM). This thickness produced a good compromise between the ability to resolve details of the synaptic contacts between the hair cells and sensory neurons and the number of sections required to reconstruct the nerve terminals within the receptor organ. The use of a goniometer allowed the sections to be tilted to angles optimum for viewing either the synaptic membrane specializations or the presynaptic bodies. Reasonably good images of 0.25-μm sections could be obtained using a conventional 120-keV microscope, but the images produced by the HVEM were clearly superior. The sensory nerve terminals and hair cells were reconstructed using a microcomputer-based computer-aided-design system. Nerve terminals with complex shapes could be successfully rendered as surface models viewed as stereo pairs. The advantages and limitations of the techniques used are discussed.  相似文献   

10.
This paper presents the works and methods of our respective laboratories using electron microscopic immunocytochemistry to identify and localize cochlear neurotransmitters. Antibodies to various prospective neurotransmitters and associated enzymes have been used to study the ultrastructural localization of several candidates for olivocochlear efferent neurotransmitters previously suggested by light microscopic immunocytochemistry. Antibodies against enkephalins label lateral olivocochlear efferent fibers. Antibodies against choline acetyltransferase (ChAT) (an enzyme marker for acetylcholine) label a major population of both lateral and medial efferent fibers and terminals, whereas antibodies to γ-aminobutyric acid (GABA) label what might be a small subpopulation of both the lateral and medial efferent systems. The GABA-like immunostained medial efferent fibers are preferentially located in the upper turns of the guinea pig cochlea, particularly the third turn. Immunoelectron microscopy shows that neither GABA nor ChAT immunolabels all medial efferent terminals, regardless of cochlear turn. All the different types of immunolabeled efferent terminals have been observed to make characteristic synaptic contacts; lateral efferent terminals on afferent dendrites and medial efferent terminals on outer hair cells and occasionally on type II afferent dendrites. Other types of contacts involving GABA-like, and sometimes met-enkephalin-like, immunostained fibers are occasionally seen particularly in the upper turns of the cochlea. Immunoelectron microscopic results suggest that both medial and lateral efferent systems might be further subdivided on the basis of differences in neurotransmitters. Future trends of immunocytochemical research on cochlear neurotransmitters are proposed, particularly colocalization studies, which show a complex pattern of coexistence of neurotransmitters in the lateral efferent system.  相似文献   

11.
For more than a century the Golgi method has been providing structural information about the organization of neuronal networks. Recent developments allow the extension of the method to the electron microscopic analysis of the afferent and efferent synaptic connections of identified, Golgi-impregnated neurones. The introduction of degeneration, autoradiographic, enzyme histochemical, and immunocytochemical methods for the characterization of Golgi-impregnated neurones and their pre-and postsynaptic partners makes it possible to establish the origin and also the chemical composition of pre-and postsynaptic elements. Furthermore, for a direct correlation of structure and function the synaptic interconnections between physiologically characterized, intracellularly HRP-filled neurones and Golgi-impregnated cells can be studied. It is thought that most of the neuronal communication takes place at the synaptic junction. In the enterprise of unravelling the circuits underlying the synaptic interactions, the Golgi technique continues to be a powerful tool of analysis.  相似文献   

12.
The synapses of photoreceptors and bipolar cells in the retina are characterized ultrastructurally by the presence of an electron-dense bar, the synaptic ribbon, lying perpendicular to the plasma membrane at the active zone and extending about 0.5 microm into the cytoplasm. Hence, these synapses are known as ribbon synapses. All neurons that make ribbon synapses release neurotransmitter tonically. That is, neurotransmitter is released continuously from these neurons and the rate of release is modulated in response to graded changes in the membrane potential. This contrasts with action potential-driven, phasic release from other neurons. Similar to other synapses, neurotransmitter is released at ribbon synapses by the calcium-dependent exocytosis of synaptic vesicles. Most components of the molecular machinery governing transmitter release are conserved between ribbon and conventional synapses, but several differences that may be important determinants of tonic transmitter release have been identified in the retina by immunohistochemistry. For example, the presynaptic calcium channels of bipolar cells and photoreceptors are different from those elsewhere in the brain. Differences have also been found in the proteins involved in synaptic vesicle recruitment to the active zone and in synaptic vesicle fusion. These differences and others are discussed in terms of their implications for neurotransmitter release from photoreceptors and bipolar cells in the retina.  相似文献   

13.
Lau JM  You HX  Yu L 《Scanning》2002,24(5):224-231
Plasma membrane from Xenopus laevis oocytes has been used as a model system to study membrane structure and particle components, including native and exogenously expressed proteins. Previous studies by electron microscopy (EM) and atomic force microscopy (AFM) compared intramembrane particles (IMPs) on uninjected oocyte membranes to oocytes expressing proteins of interest. These studies observed randomly distributed IMPs on the surface of the oocyte plasma membrane. In this paper, we introduce a novel technique to isolate oocyte membranes by bursting the oocyte and depositing its membrane on a flat mica substrate. The flat surface membrane preparation allows high-resolution AFM images to beobtained, revealing a novel structure of densely packed particles. These particles exhibit a regular, repeating pattern of a lattice-like array with orderly packing and are thus termed "lattice-like array particles" (LAPs). The LAPs are orderly yet imperfectly packed, are located in depressed pools, occur with a low frequency on the oocyte membrane surface, and have not previously been seen using other isolation and imaging methods. Histogram analysis of the center-to-center distance between LAPs suggest their size to be about 44 nm in diameter, considerably larger than other reported size estimates of IMPs. These results indicate that LAPs represent a novel membrane particle organization, which merits further study.  相似文献   

14.
Freeze-fracture analysis of adult spiral ganglion cells of CBA/CBA mice revealed two types of membrane specializations. Most cells (type I) had a smooth surface and were surrounded by Schwann cells. Type II spiral ganglion cells showed numerous membrane specializations with well-delineated indentations similar to those previously found on hair cells adjacent to afferent and efferent nerve endings. Immunomorphological analysis (using well-defined monoclonal antibodies directed against different subclasses of intermediate filament proteins) revealed a unique co-expression of neurofilaments, vimentin and cytokeratins in spiral ganglion cells of 8-to 22-week human fetuses.  相似文献   

15.
A number of different neuropeptides have been described within presynaptic terminals at the ultrastructural level in the central nervous system. The majority of these neuropeptides share a common morphology with one another. Terminals containing neuropeptides have a population of small, clear vesicles associated with the active zone of the synapse and a lesser number of large, granular vesicles that are located at a distance from the active site of the synapse. It is believed that the large, granular vesicles act as a mechanism for the transport/storage of the neuropeptides, while the small, clear vesicles are thought to be acting as structures responsible for the release of the neurotransmitter/neuropeptide into the synaptic cleft. The neuropeptide containing terminals most often have asymmetrical junctions associated with their presynaptic membranes, although symmetrical junctions have been described with peptide containing terminals in a number of areas in the central nervous system. Neuropeptide containing terminals contact every part of the neuronal membrane; however, the majority of synaptic contacts involve portions of the dendritic shafts. Evidence is beginning to accumulate to indicate that for certain neuropeptides there is a specific spatial arrangement to their termination along the neuronal membrane.  相似文献   

16.
For analyses of dynamic ultrastructures of erythrocyte intramembranous particles (IMPs) in situ, a quick-freezing method was used to stabilize the flow behavior of erythrocytes embedded in vitreous ice. Fresh human blood was jetted at various pressures through artificial tubes, in which the flowing erythrocytes were elongated from biconcave discoid shapes to elliptical ones, and quickly frozen in liquid isopentane-propane cryogen (-193 degrees C). They were freeze-fractured using a scalpel in liquid nitrogen, and routinely prepared for replica membranes. Many IMPs were observed on the protoplasmic freeze-fracture face (P-face) of the erythrocyte membranes. Some control erythrocytes under nonflowing or stationary conditions showed IMPs with their random distribution. However, other jetted erythrocytes under flowing conditions showed variously sized IMPs with much closer distribution. They were also arranged into parallel rows in some parts, and aggregated together. This quick-freezing method enabled for the first time the visualization of time-dependent topology and the molecular alteration of IMPs in dynamically flowing erythrocytes.  相似文献   

17.
Thin sections of nervous tissue were viewed at different tilt angles using a transmission electron microscope equipped with a eucentric goniometer stage. In a comparison study of various degrees of tilt, one can observe additional morphological features within synaptic profiles, define subsynaptic structures such as Taxi-bodies, and clearly see the crystalline formation of cytochemical tracers. This study demonstrates the value of tilting thin-sections in the analysis of synapses and other biological material at the ultrastructural level.  相似文献   

18.
In this study the Golgi/electron microscopy (EM) technique has been used for an analysis of the fine structure, specific synaptic connections, and differentiation of neurons in the hippocampus and fascia dentata of rodents. In a first series of experiments the specific synaptic contacts formed between cholinergic terminals and identified hippocampal neurons were studied. By means of a variant of the section Golgi impregnation procedure, Vibratome sections immunostained for choline acetyltransferase, the acetylcholine-synthesizing enzyme, were Golgi-impregnated in order to identify the target neurons of cholinergic terminals in the hippocampus. It could be shown with this combined approach that cholinergic septohippocampal fibers form a variety of synapses with different target structures of the Golgi-impregnated and gold-toned hippocampal neurons. In this report cholinergic synapses on the heads of small spines, the necks of large complex spines, dendritic shafts, and cell bodies of identified dentate granule cells are described. The variety of cholinergic synapses suggests that cholinergic transmission in the fascia dentata is a complex event. Next, the Golgi/EM technique was applied to Vibratome sections that contained retrogradely labeled neurons in the hilar region of the fascia dentata following horseradish peroxidase (HRP) injection into the contralateral hippocampus. With this combined approach some of the hilar cells projecting to the contralateral side were identified as mossy cells by the presence of retrogradely transported HRP in thin sections through these Golgi-impregnated and gold-toned neurons. Our findings suggest that the mossy cells are part of the commissural/associational system terminating in the inner molecular layer of the fascia dentata. They are mainly driven by hilar collaterals of granule cell axons that form giant synapses on their dendrites. Finally, the Golgi/EM procedure was used to study the differentiation and developmental plasticity of hippocampal and dentate neurons in transplants and slice cultures of hippocampus. Under both experimental conditions, the differentiating neurons are deprived of their normal laminated afferent innervation but develop their major cell-specific characteristics including a large number of postsynaptic structures (spines). As revealed in thin sections of gold-toned identified cells, all these spines formed synapses with presynaptic boutons suggesting sprouting of the transplanted and cultured neurons, respectively. Altogether, the present report demonstrates the usefulness of the Golgi/EM technique, particularly of the section impregnation procedure, for a variety of studies requiring the identification of individual neurons at the ultrastructural level.  相似文献   

19.
Two types of sensory organs in crustaceans and arachnids, the various mechanoreceptors of spiders and the crustacean muscle receptor organs (MRO), receive extensive efferent synaptic innervation in the periphery. Although the two sensory systems are quite different-the MRO is a muscle stretch receptor while most spider mechanoreceptors are cuticular sensilla-this innervation exhibits marked similarities. Detailed ultrastructural investigations of the synaptic contacts along the mechanosensitive neurons of a spider slit sense organ reveal four important features, all having remarkable resemblances to the synaptic innervation at the MRO: (1) The mechanosensory neurons are accompanied by several fine fibers of central origin, which are presynaptic upon the mechanoreceptors. Efferent control of sensory function has only recently been confirmed electrophysiologically for the peripheral innervation of spider slit sensilla. (2) Different microcircuit configuration types, identified on the basis of the structural organization of their synapses. (3) Synaptic contacts, not only upon the sensory neurons but also between the efferent fibers themselves. (4) Two identified neurotransmitter candidates, GABA and glutamate. Physiological evidence for GABAergic and glutamatergic transmission is incomplete at spider sensilla. Given that the sensory neurons are quite different in their location and origin, these parallels are most likely convergent. Although their significance is only partially understood, mostly from work on the MRO, the close similarities seem to reflect functional constraints on the organization of efferent pathways in the brain and in the periphery.  相似文献   

20.
Three methods are described for direct post-fracture, post-shadow labelling of individual classes of intramembrane particles (IMPs) in freeze-fracture replicas of biological membranes. The P-face IMPs corresponding to the acetylcholine receptor complexes (AChRs) of vertebrate neuroeffector junctions are identified by post-replication labelling with ferritin-antibody complexes and with neurotoxin-biotin-avidin-colloidal gold affinity ligands. (The freeze-etch nomenclature of Branton et al., 1975, is used in this report.) These post-shadow labelling techniques resemble conventional en bloc labelling techniques except that the labelling reagents must penetrate a thin but discontinuous layer of platinum superimposed on the molecules of interest. In the ‘sectioned labelled-replica technique’, the replicated and labelled tissues are stained, embedded in plastic and sectioned parallel to the replica-tissue interfaces. In the direct ‘labelled-replica techniques’, the replicated and labelled samples are freeze-dried or critical point dried, the labelled surfaces are stabilized by carbon coating, and the underlying tissues are dissolved, allowing the labelled-replicas to be examined as conventional freeze-fracture replicas. The unshadowed side of each AChR IMP is shown to retain sufficient biochemical information to permit both immunospecific and neurotoxin specific labelling despite formaldehyde fixation, freezing, fracturing, platinum shadowing, and thawing in aqueous media. A new mixed ferricyanide-osmium staining method reveals electron opaque structures spanning the membrane bilayer in the same size, number and distribution as the labelled IMPs. These experiments demonstrate the feasibility of identifying individual IMPs in freeze-fracture replicas and may allow the identification of specific membrane lesions in human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号