首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reactive polystyrene (OPS) and reactive polyethylene (CPE) with oxazoline and carboxylic acid functionality, respectively, were melt blended in a Rheomix mixer under a variety of conditions. The properties of these blends were examined and correlated with the compositions and mixing conditions such as shear rate, time, and temperature. An increase in torque was observed, which is believed related to chemical reaction between OPS and CPE. The difference between the maximum and minimum torque (Tmax-Tmin), increases from 48 to a maximum of 510 m-g for 10 and 40% CPE reacted blends, respectively, But on further increase in the CPE amount in the blend the torque increase drops reaching a final minimum value of 133 m-g for a blend with 90% CPE. Differential Scanning Calorimetry (DSC) studies reveal a single first order transition, due to CPE, for each of these polymer blends. Furthermore, evidence of the glass transition temperature for OPS diminishes with increasing CPE content and mixing time. Scanning Electron Micrographs (SEM) show a fine dispersion in these reactive blends, with particle size much smaller than a micron. Blends with 50% or more CPE have no distinguishable features as such. Mechanical properties such as elongation at break of reacted blends are improved over the nonreactive polyethylene (PE) and polystyrene (PS) blends. An intermolecular reaction between the OPS and CPE results in a graft polymer, which imparts improvement in the overall properties of these reacted blends. The maximum grafting reaction corresponds to 40% CPE blend, which is being evaluated as a potential compatibilizer.  相似文献   

2.
Polyolefin/polystyrene (PS) blends are difficult to compatibilize using in situ reactive compatibilization techniques, because neither of these polymers has any functional groups that one can use in the formation of a copolymer from these polymer components. In this study, the Friedel–Crafts alkylation was realized in a polyethylene/PS (PE/PS) melt blend, which resulted in improved compatibility between PE and PS. A number of Lewis acid compounds were tested as catalysts, among which the AlCl3 was the most efficient. It was found in this study that the presence of a cocatalyst, such as a cationically polymerizable monomer or a halogenated alkane, significantly enhances the formation of PE-g-PS copolymer. The effects of blending parameters, such as temperature and blending time, on the in situ copolymer formation were investigated. The mechanical properties of compatibilized PE/PS blends were improved considerably. Such an in situ compatibilization technique has potential in the recycling of mixed polymer wastes. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1385–1393, 1997  相似文献   

3.
Acrylonitrile-butadiene rubber having carboxylic acid groups (XNBR) and polystyrene having oxazoline groups, were melt blended in a Rheomix mixer under optimized conditions, The ratio of rubber to polystyrene phase was kept constant at 1:4 by weight. The concentration of the reactive oxazoline groups in the polystyrene phase was varied by mixing polystyrene (PS) with a copolymer of styrene and vinyl oxazoline (OPS). A torque rise observed during blending was found to be related to the concentration of oxazoline-carboxylic acid pairs. This torque rise, and independently measured increases in viscosity, both indicate inter-polymer crosslinkihg. Scanning electron microscopy was used to observe the morphology of the blends. Improved rubber phase dispersion was observed with increasing oxazoline concentration. Instrumented impact strength measurements were made using an unnotched Charpy technique. The plastic yielding was then quantified with the use of a ductility ratio. The impact strengths and ductility of the reactive blends are found to be up to 73% greater than those of the corresponding non-reactive blends. Increasing the OPS concentration beyond 5% results in decreasing impact strength, for as the compatibility increases, the rubber particle size decreases below an effective size for rubber toughening. Similar impact improvement is observed when the major PS phase is substituted with high impact polystyrene (HIPS) containing some OPS.  相似文献   

4.
The effectiveness of chlorinated polyethylene-graft-polystyrene (CPE-g-PS) as a polymeric compatibilizer for immiscible poly(vinyl chloride)/polystyrene (PVC/PS) blends was investigated. The miscibility, phase behavior, and mechanical properties were studied using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Izod impact tests, tensile tests, and scanning electron microscopy (SEM). DSC and DMA studies showed that PVC is immiscible with chlorinated polyethylene (CPE) in CPE-g-PS, whereas the PS homopolymer is miscible with PS in CPE-g-PS. The PVC/PS/CPE-g-PS ternary blends exhibit a three-phase structure: PVC phase, CPE phase, and PS phase that consisted of a PS homopolymer and PS in CPE-g-PS. The mechanical properties showed that CPE-g-PS interacts well with both PVC and PS and can be used as a polymeric compatibilizer for PVC/PS blends. CPE-g-PS can also be used as an impact modifier for both PVC and PS. SEM observations confirmed, after the addition of CPE-g-PS, improvement of the interfacial adhesion between the phases of the PVC/PS blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 995–1003, 1998  相似文献   

5.
Vivek Thirtha  Thomas Nosker 《Polymer》2006,47(15):5392-5401
The effects uncompatibilized immiscible polymer blend compositions on the Tg of the amorphous polymer were studied in the systems polystyrene/polypropylene (PS/PP), polystyrene/high density polyethylene (PS/PE) and polycarbonate/high density polyethylene (PC/PE). In the two similar systems of PS/PP and PS/PE, the Tg of PS increased with decreasing PS percentage in the blends. This variation in glass transition is attributed to the polymer domain interactions resulting from the different morphologies of various blend compositions. Experiments were conducted to study these effects by preparing blends with various polymers that varied the relationship between the Tg of the amorphous polymer and the crystallization behavior of the semicrystalline polymer. Results show that the variation in amorphous component Tg with composition depends strongly on the physical state of the semicrystalline domains. Whereas the Tg of PS in PS/PE blends changed with composition, the Tg of PC in the PC/PE blend did not change with composition.  相似文献   

6.
Blends of chlorinated polyethylene (CPE) elastomer and ethylene methacrylate copolymer (EMA) in various compositions were studied for their compatibility using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier transform infrared (FTIR) spectroscopy techniques. Irrespective of measurement techniques used, all blends showed a single glass transition temperature (Tg) lying in between the Tg of control polymers in both DSC and DMA. Glass transition temperatures of blends obtained from DSC were in consistency with Couchman–Karasz equation. Also, the Tg obtained from both DSC and DMA are above the “rule of mixing” line of the two control polymers. These results from thermal analysis clearly indicate some compatibility between the two polymers. Furthermore, compatibility of CPE/EMA blends were also been investigated by FTIR spectroscopy and scanning electron microscopic analysis. A shifting of characteristic C? Cl stretching peak of CPE and C?O stretching peak of EMA toward lower wave number indicate the presence of specific interaction between the two polymers. Mechanical properties like tensile strength, modulus at 100% elongation, elongation at break, and hardness were observed above the line of additivity drawn between the two control polymers, which corroborate compatibility between CPE and EMA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40316.  相似文献   

7.
In this study, we report the synergistic effect of nanoclay and maleic anhydride grafted polyethylene (PE‐g‐MA) on the morphology and properties of (80/20 w/w) nylon 6/high density polyethylene (HDPE) blend. Polymer blend nanocomposites containing nanoclay with and without compatibilizer (PE‐g‐MA) were prepared by melt mixing, and their morphologies and structures were examined with scanning electron microscopy (SEM) and wide angle X‐ray diffractometer (WAXD) study. The size of phase‐separated domains decreased considerably with increasing content of nanoclay and PE‐g‐MA. WAXD study and transmission electron microscopy (TEM) revealed the presence of exfoliated clay platelets in nylon 6 matrix, as well as, at the interface of the (80/20 w/w) nylon 6/HDPE blend–clay nanocomposites. Addition of PE‐g‐MA in the blend–clay nanocomposites enhanced the exfoliation of clays in nylon 6 matrix and especially at the interface. Thus, exfoliated clay platelets in nylon 6 matrix effectively restricted the coalescence of dispersed HDPE domains while PE‐g‐MA improved the adhesion between the phases at the interface. The use of compatibilizer and nanoclay in polymer blends may lead to a high performance material which combines the advantages of compatibilized polymer blends and the merits of polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
A novel graft copolymer (PE-g-LCP) consisting of polyethylene (PE) backbones and liquid crystalline polymer (LCP) branches was synthesized via reactive blending of an acrylic acid-functionalized PE (Escor 5000 by Exxon) with a semiflexible LCP (SBH 1 : 1 : 2 by Eniricerche S.p.A.). The crude reactive blending product (COP) was shown by investigation of the fractions soluble in boiling toluene and xylene and of the residue to contain unreacted Escor and SBH, together with the graft copolymer forming the interphase. The compatibilizing activity of COP for PE/SBH blends, compared to that of pure Escor, was investigated using two PE grades. The COP addition into 80/20 PE/SBH blends caused a much stronger reduction of the SBH droplet dimensions and morphology stabilization than did that of pure Escor. The rheological behavior of the samples showed that COP leads to a slight increase of interfacial adhesion in the melt as well and that the effect is more pronounced when lower molar mass PE grade is used as the blend matrix. Melt-spinning tests demonstrated that deformation of the SBH droplets into highly oriented fibrils can be obtained for the blends of lower molar mass PE, compatibilized with small amounts of the novel PE-g-SBH copolymer. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2069–2077, 1999  相似文献   

9.
Oxazoline‐functionalized polypropylenes were synthesized by using the rac‐Et[1‐Ind]2ZrCl2/MAO catalyst system. The used comonomers were 2‐(9‐decene‐1‐yl)‐1,3‐oxazoline (R‐Ox1), 2‐(9‐decene‐1‐yl)‐4,4‐dimethyl‐1,3‐oxazoline (R‐Ox2), and 2‐(4‐(10‐undecene‐1‐oxy)phenyl)‐1,3‐oxazoline (R‐Ox3). The oxazolines reduce the catalyst activity in the order R‐Ox3 > R‐Ox1 > R‐Ox2. By the addition of triisobutylaluminum (TIBA), the catalyst poisoning is reduced and is most pronounced in the R‐Ox1‐ and R‐Ox2‐containing systems. The oxazoline‐containing copolymers were melt blended with carboxylic acid end‐functionalized polystyrene (PS‐COOH) at 200°C. Strong changes in the morphology of the reactive blends compared to the nonreactive blends, especially the cocontinuous morphology in a poly(propylene‐co‐R‐Ox3)/PS‐COOH blend, indicate the usefulness of the modified copolymers in the reactive blending processes. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2174–2181, 2002  相似文献   

10.
The effects of the starch content, photosensitizer content, and compatibilizer on the photobiodegradability of low‐density polyethylene (LDPE) and banana starch polymer blend films were investigated. The compatibilizer and photosensitizer used in the films were PE‐graft‐maleic anhydride (PE‐g‐MA) and benzophenone, respectively. Dried banana starch at 0–20% (w/w) of LDPE, benzophenone at 0–1% (w/w) of LDPE, and PE‐g‐MA at 10% (w/w) of banana starch were added to LDPE. The photodegradation of the blend films was performed with outdoor exposure. The progress of the photodegradation was followed by determining the carbonyl index derived from Fourier transform IR measurements and the changes in tensile properties. Biodegradation of the blend films was investigated by a soil burial test. The biodegradation process was followed by measuring the changes in the physical appearance, weight loss, and tensile properties of the films. The results showed that both photo‐ and biodegradation rates increased with increasing amounts of banana starch, whereas the tensile properties of the films decreased. The blends with higher amounts of benzophenone showed higher rates of photodegradation, although their biodegradation rates were reduced with an increase in benzophenone content. The addition of PE‐g‐MA into polymer blends led to an increase in the tensile properties whereas the photobiodegradation was slightly decreased compared to the films without PE‐g‐MA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2725–2736, 2006  相似文献   

11.
In the present study, the properties of metallocene polyethylene–octene elastomer (POE) and wood flour (WF) blends were examined by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), an Instron mechanical tester, and scanning electron microscopy (SEM). The results showed that the mechanical properties of POE were obviously lowered, due to the poor compatibility between the two phases, when it was blended with WFs. A fine dispersion and homogeneity of WF in the polymer matrix could be obtained when acrylic acid‐grafted POE (POE‐g‐AA) was used to replace POE for manufacture of the blends. This better dispersion is due to the formation of branched and crosslinked macromolecules since the POE‐g‐AA copolymer had carboxyl groups to react with the hydroxyls. This is reflected in the mechanical and thermal properties of the blends. In comparison with a pure POE/WF blend, the increase in tensile strength at break was remarkable for the POE‐g‐AA/WF blend. The POE‐g‐AA/WF blends are more easily processed than are the POE/WF blends, since the former had a lower melt viscosity than that of the latter. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1919–1924, 2003  相似文献   

12.
Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE‐g‐MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated Tg revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890–1897, 2013  相似文献   

13.
The effects of glycerol and polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the morphology, thermal properties, and tensile properties of low‐density polyethylene (LDPE) and rice starch blends were studied by scanning electron microscopy (SEM), differential scanning calorimetry, and the Instron Universal Testing Machine, respectively. Blends of LDPE/rice starch, LDPE/rice starch/glycerol, and LDPE/rice starch/glycerol/PE‐g‐MA with different starch contents were prepared by using a laboratory scale twin‐screw extruder. The distribution of rice starch in LDPE matrix became homogenous after the addition of glycerol. The interfacial adhesion between rice starch and LDPE was improved by the addition of PE‐g‐MA as demonstrated by SEM. The crystallization temperatures of LDPE/rice starch/glycerol blends and LDPE/rice starch/glycerol/PE‐g‐MA blends were similar to that of pure LDPE but higher than that of LDPE/rice starch blends. Both the tensile strength and the elongation at break followed the order of rice starch/LDPE/glycerol/PE‐g‐MA blends > rice starch/LDPE/glycerol > LDPE/rice starch blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 344–350, 2004  相似文献   

14.
The possibility of reinforcing polyethylene (PE) by blending it with a liquid crystalline polymer (LCP) rests on the successful improvement of phase compatibility and interfacial adhesion of these two structurally unlike polymers. The approach that is being considered in our laboratories consists of the synthesis of PE–LCP block or graft copolymers and of their use as compatibilizing agents for PE/LCP blends. In this work, the melt polycon-densation of sebacic acid (S), 4,4′-dihydroxybiphenyl (B), and 4-hydroxybenzoic acid (H) has been carried out at temperatures up to 280°C in the presence of an oxidized low molar mass PE sample containing free carboxylic groups (PEox), with the main scope of demonstrating that a PE-g-LCP copolymer may be synthesized by this route. The polycon-densation product has been fractionated by successive extractions with boiling toluene and xylene. The soluble fractions and the residues have been characterized by IR and NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TG, DTG), and scanning electron microscopy (SEM). The extractions and the analyses have been repeated on a PEox/LCP blend prepared by melt mixing PEox and preformed LCP (SBH 112, by Eniricerche). The results show that, whereas for the blend a fairly clean separation of PEox and SBH can be obtained by solvent extraction, this is not so for the polycondensation product. All analytical procedures concordantly show that a PEox-g-SBH copolymer has, in fact, been obtained. In effect, both PEox and SBH chain segments are present, with different relative ratios, in all fractions of the polycondensate. Moreover, a fairly quantitative esterification of the PEox carboxyl groups has been shown by IR analysis to take place in the adopted conditions. Preliminary morphological investigations carried out by SEM have shown that the addition of the synthesized graft copolymer into HDPE/SBH blends leads to an improvement of the interfacial adhesion. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The rheology, morphology, and mechanical properties of blends of high‐density polyethylene (HDPE) with a semiflexible liquid crystalline copolyester (SBH) were studied in order to assess the compatibilizing ability of added PE‐g‐SBH copolymers, and its dependence on the molar mass of the PE matrix, and on the technique used for blend preparation. The PE‐g‐SBH copolymers were synthesized as described in previous articles, either by the polycondensation of the SBH monomers in the presence of a functionalized PE sample containing free carboxyl groups, or by reactive blending of the latter polymer with preformed SBH. Two samples of HDPE having different molar masses, and two samples of SBH with different melt viscosity and different microstructure, were used for preparing the blends. The two components and the compatibilizer were either blended in a single batch or used to prepare binary master blends to which the third component was added at a later stage. The results indicate that the PE‐g‐SBH copolymers do, in fact, compatibilize the PE–SBH blends and that the effect is more pronounced with the lower molar mass PE matrix and with the SBH sample having lower viscosity. The experiments carried out on blends prepared with different techniques show that the compatibilizing ability of the graft copolymer is improved if the latter is first blended with either of the two main components. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 603–613, 1999  相似文献   

16.
ABSTRACT

Herein, graft-modified ethylene-1-octene copolymer (POE-g-GMA) and styrene-butadiene-styrene triblock copolymer (SBS-g-GMA) were found to be excellent reactive compatibilizers for immiscible poly(ethylene terephthalate) (PET)/high-density polyethylene (HDPE) blends via in-situ reaction compatibilization. With increase in compatibilizer amount, uniform phase morphology was observed in all the blends. Thus, exhibiting enhanced mechanical properties, especially, the notched Izod impact strength. In comparison with SBS-g-GMA, compatibilizer POE-g-GMA demonstrated greater impact on the compatibility. The addition of 15% POE-g-GMA produced blends with best mechanical properties. Besides, both POE-g-GMA and SBS-g-GMA enhanced the melt viscosity of PET/HDPE blends.  相似文献   

17.
The aim of this study was to evaluate the effect of cellulose nanofibers (CNFs) and acetylated cellulose nanofibers (ACNFs) on the properties of low‐density polyethylene/thermoplastic starch/polyethylene‐grafted maleic anhydride (LDPE/TPS/PE‐g‐MA) blends. For this purpose, CNFs, isolated from wheat straw fibers, were first acetylated using acetic anhydride in order to modify their hydrophilicity. Afterwards, LDPE/TPS/PE‐g‐MA blends were reinforced using either CNFs or ACNFs at various concentrations (1–5 wt%) with a twin‐screw extruder. The mechanical results demonstrated that addition of ACNFs more significantly improved the ultimate tensile strength and Young's modulus of blends than addition of CNFs, albeit elongation at break of both reinforced blends decreased compared with the neat sample. Additionally, biodegradability and water absorption capacity of blends improved due to the incorporation of both nanofibers, these effects being more pronounced for CNF‐assisted blends than ACNF‐reinforced counterparts. © 2018 Society of Chemical Industry  相似文献   

18.
聚苯乙烯—聚乙烯的反应性共混研究   总被引:8,自引:1,他引:8  
用IR,DSC,DMA等分析方法了研究恶唑啉官能化聚苯乙烯(RPS)与马来酸酐接枝聚乙烯(MPE)的共混反应,对反应性共混物及相应的非反应性共混物作了应力-应变试验,发现反应性共混提高了PE/PS共混物的力学性能,改变了MPE的结晶情况。  相似文献   

19.
The feasibility of inducing beneficial changes to polystyrene/polyethylene (PS/PE) blends via reactive extrusion processes is considered. Experiments have been conducted on 50:50 wt.% PS/PE blends that were treated with different levels of dicumyl peroxide and triallyl isocyanurate coupling agent. Both a low molecular weight and a high molecular weight blend series have been investigated. A “more reactive” polystyrene was synthesized by incorporation of a minor amount of ortho-vinylbenzaldehyde. Blends containing this modified polystyrene were subjected to identical processing' conditions on a counter-rotating twin screw extruder. Examination of the tensile properties of the extrusion products suggested that a judicious level of peroxide and coupling agent additives would be beneficial to the ultimate physical properties. The quantity of styrenic phase becoming chemically grafted to the polyethylene matrix was influenced most strongly by the level of the chosen coupling agent. As determined by scanning electron microscopy, the phase morphologies of the tensile test fracture surfaces were strongly dependent upon the reaction extrusion process; those extruded blends that had been exposed to the additive pre-treatment displayed substantially finer microstructure. The enthalpy of fusion of the polyethylene melting endotherm was likewise influenced by both the presence or absence of the additives as well as the molecular weight nature of the blend series.  相似文献   

20.
Polycarbonate with anhydride end groups (PC‐anh) was prepared by the reaction between polycarbonate having hydroxyl end groups (PC‐OH) and trimellitic anhydride chloride (TMAC). Hydroxyl or anhydride terminated polycarbonates were characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. The reaction of PC‐anh with polystyrene containing oxazoline reactive groups (RPS) was confirmed not only by the torque measurement during melt blending of these two but also by FTIR spectroscopy of the reactive blend obtained. Polycarbonate (PC) / polystyrene (PS) compatibilized blends were prepared by melt blending along with their reactive counterparts, PC‐anh and RPS in the Haake mixer. The morphologies of these blends were examined by the scanning electron microscope (SEM). The compatibilized blends with reactive components showed relatively finer morphologies than the uncompatibilized blend without reactive components. Izod impact strength and rheological property of these blends were also investigated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1338–1347, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号