共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
为了分析投产初期高炉炉缸炉底的温度分布情况,以经典传热模型为基础,采用有限元计算技术,建立了昆钢新区2 500 m~3高炉炉缸炉底侵蚀模型。本模型以高炉开炉初期温度为基础,绘制出炉缸炉底温度场分布曲线,模型计算值与热电偶实测值相比,误差在-6.52%~+7.69%的范围内,表明模型计算较为准确。根据模型计算结果,提出了加长风口小套长度、提高鼓风动能和加大死铁层厚度等工作建议,为制定高炉合理的操作维护方针和完善高炉长寿设计提供重要参考。 相似文献
3.
武钢1号高炉炉底与炉缸长寿新技术 总被引:4,自引:0,他引:4
武钢1号高炉改造性大修,炉底与炉缸采用长寿新技术:增大炉缸容积,加深死铁层;选用半石墨炭砖和德国的高密质炭砖;炉底冷却采用软水密闭循环,以及设置完善的检测设施。总结运用钒钛矿护护经验,以减缓或消除炉底与炉缸“环缝”、“熔洞”、“蒜头状”侵蚀,达到炉底、炉缸高校长寿的目的。 相似文献
4.
介绍杭钢高炉炉缸炉底结构的发展变化情况,分析了几种炉缸结构和内衬材质的特点和应用效果,经多年探讨和发展,杭钢高炉长寿达到了国内先进水平。 相似文献
5.
6.
7.
8.
简述了高炉炉缸炉底结构发展的过程及目前国外高炉炉缸炉底所采用的形式;介绍了鞍钢7号高炉炉缸炉底的设计情况,并总结了其采用的陶瓷杯结构和半石墨化碳砖的优点。 相似文献
9.
11.
12.
This paper describes the development of a heat transfer model with the purpose of studying the heat flows in the hearth of an operating blast furnace. Temperature profiles were calculated for a period of time to study the transition from steady blast furnace operation to an unsteady period, and back to a steady period. This total time period had the highest lining temperatures registered since the beginning of the current campaign. It was concluded that no part of the lining had an inner temperature higher than the critical temperature of 1150 °C. Thus, no refractory could have been in direct contact with slag or iron. The corner between the wall and the bottom was identified to be the most sensitive part of the lining. It is suggested that thermocouples are installed in this area, to improve the temperature control. 相似文献
13.
14.
从炉缸结构设计关键要素的分析着手,从侵蚀机制、炉缸传热体系的建立到炉缸的设计理念对炉缸的长寿 进行了全面的论述。指出高炉长寿的关键控制环节为:设计、施工、烘炉、开炉节奏、操作稳定、维护管理。在合适 的炉缸冷却系统和结构配置条件下,有效杜绝和防止气隙是炉缸长寿的关键。设计要有完善的防止气隙的措施; 安装中要严格控制每一个环节;采用热水烘炉提高炉墙温度,促进水分蒸发;控制高炉开炉进程,给予新高炉一个 磨合期,保证炉缸的传热体系可靠、有效,以实现炉缸的无气隙化操作。无论炉缸耐材采用何种配置结构和采用何 种冷却系统,都必须以建立良好的传热体系为前提,只有尽快形成稳定的渣铁壳,才能实现炉缸的长寿。 相似文献
15.
ZHAO Hong-bo CHENG Shu-sen ZHAO Min-ge 《钢铁研究学报(英文版)》2007,14(2):6-12
One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat transfer, models of BF hearth bottom are built based on the actual examples using software and VC language, and the calculated results are in good agreement with the data of BF dissection after blowing out. The temperature distribution and the capability of the resistance to erosion for different structures of hearth bottom are analyzed, especially the two prevalent kinds of hearth bottom arrangements called "the method of heat transfer" for all-carbon brick bottom and "the method of heat isolation" for ceramic synthetic hearth bottom. Features of the two kinds of hearth bottoms are analyzed. Also the different ways of protecting the hearth bottom are clarified, according to some actual examples. After that, the same essence of prolonging life, and the fact that the existence of a "protective skull" with low thermal conductivity between the hot metal and brick layers is of utmost importance are shown. 相似文献
16.
高炉侵蚀归根结底是动量传输、热量传输和质量传输这三传的问题。如果炉底热面凝结一层渣铁壳,将有利于高炉长寿。目前,虽然已经有了许多数值求解三维导热微分方程的软件,但对于设计人员来说,快速评估所设计炉底热面能否形成渣铁壳有重要意义。笔者利用一维温度场分析(热阻分析)方法,通过炉底各层对冷却水冷却能力及1 150 ℃等温线的影响,估测渣铁壳的形成。最终得到影响炉底侵蚀的限制性环节,为优化高炉炉底结构设计,提高高炉寿命奠定理论基础。 相似文献
17.
Understanding the complex phenomena in the BF hearth is essential to increasing furnace productivity and to extending furnace campaign. Numerical modeling provides a cost‐effective tool to obtain such knowledge. We have developed several continuum‐based mathematical/numerical models to simulate the flow, heat transfer and mass transfer in the lower part of BF and in the hearth. These models have generated an improved insight into the mechanisms for liquid drainage efficiency, lining erosion and wall protection in BF hearth under operational conditions. The current paper provides an overview of these studies, as well as dealing with three specific aspects: (a) Gas flow and pressure on the liquid surface, and its effect on the drainage characteristics; (b) Flow and temperature distributions of liquid iron in the hearth, and the temperature distribution in the refractories; and (c), Titania injection to form Ti(C,N)‐rich scaffolds on the hearth refractory surface, to protect the hearth from erosion. 相似文献
18.
高炉长寿是系统工程。介绍了国外一批长寿高炉的经验。介绍了近20多年来对长寿高炉进行的解剖;提出了在日常生产中,延缓炉缸侵蚀的措施:如炉缸侧壁形成凝结层,改进出铁制度控制铁水环流;改变死料堆的内部结构避免局部侵蚀。还提出了在炉缸不同侵蚀阶段采用相应的具体措施。 相似文献
19.
The critical heat flux surveys of thirteen Chinese blast furnaces were carried out.The mathematical model of hearth bottom was established and the temperature field was simulated by utilizing the method of inverse problem based on the collected parameters and temperature data.The critical heat flux and dangerous critical heat flux of hearth were defined and analyzed as well as the initial and investigative critical heat flux of hearth,and the influences of thermal conductivity and residual thickness of carbon bricks on critical heat flux were discussed.The relationships between critical heat flux of stave and hearth bricks were also compared.It is found that the dangerous critical heat flux of these blast furnaces ranged from 9.38 to 57kW/m2.Therefore,there was no uniform critical heat flux of hearth due to the structure design,refractory materials selection,construction quality of hearth and other factors.The heat flux should be lower than the critical heat flux with corresponding thickness of carbon bricks to control the erosion of hearth.The critical heat flux of stave would be much lower than that of hearth bricks with the air gap.However,the critical heat flux of stave should be higher than that of hearth bricks when gas existed between furnace shell and staves. 相似文献