首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An efficient alternative to the S control chart for detecting shifts of small magnitude in the process variability using a moving average based on the sample standard deviation s statistic is proposed. Control limit factors are derived for the chart for different values of sample size and span w. The performance of the moving average S chart is compared to the S chart in terms of average run length. The result shows that the performance of moving average S chart for varying values of w outweigh those of the S chart for small and moderate shifts in process variability.  相似文献   

2.
We present a method to design control charts such that in‐control and out‐of‐control run lengths are guaranteed with prespecified probabilities. We call this method the percentile‐based approach to control chart design. This method is an improvement over the classical and popular statistical design approach employing constraints on in‐control and out‐of‐control average run lengths since we can ensure with prespecified probability that the actual in‐control run length exceeds a desired magnitude. Similarly, we can ensure that the out‐of‐control run length is less than a desired magnitude with prespecified probability. Some numerical examples illustrate the efficacy of this design method.  相似文献   

3.
We study the effect of the Phase I estimation error on the cumulative sum (CUSUM) chart. Impractically large amounts of Phase I data are needed to sufficiently reduce the variation in the in-control average run lengths (ARL) between practitioners. To reduce the effect of estimation error on the chart's performance we design the CUSUM chart such that the in-control ARL exceeds a desired value with a specified probability. This is achieved by adjusting the control limits using a bootstrap-based design technique. Such approach does affect the out-of-control performance of the chart; however, we find that this effect is relatively small.  相似文献   

4.
We evaluate the in‐control performance of the np‐control chart with estimated parameter conditional on the Phase I sample. We then apply the bootstrap method to adjust the control chart limits to guarantee the desired in‐control average run length (ARL0) value in the monitoring stage. The adjusted limits ensure that the ARL0 would take a value greater than the desired value (say, B ) with a certain specified probability, that is, Pr(ARL 0 > B ) = 1 ? ρ . The results indicate that adjusting control limits is not always necessary. We present a method to design control charts such that in control and out of control run lengths are guaranteed with pre specified probabilities. This method is an improvement of the classical statistical design approach employing constraints on in control and out of control ARL because, with this approach, there is a substantial probability that the actual run length in control may be too small. In addition, using the ARL approach may result in an actual out of control run length that is too large. Some numerical examples illustrate the efficacy of this design method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The in-control performance of Shewhart and S2 control charts with estimated in-control parameters has been evaluated by a number of authors. Results indicate that an unrealistically large amount of Phase I data is needed to have the desired in-control average run length (ARL) value in Phase II. To overcome this problem, it has been recommended that the control limits be adjusted based on a bootstrap method to guarantee that the in-control ARL is at least a specified value with a certain specified probability. In this article we present simple formulas using the assumption of normality to compute the control limits and therefore, users do not have to use the bootstrap method. The advantage of our proposed method is in its simplicity for users; additionally, the control chart constants do not depend on the Phase I sample data.  相似文献   

6.
Several modifications and enhancements to control charts in increasing the performance of small and moderate process shifts have been introduced in the quality control charting techniques. In this paper, a new hybrid control chart for monitoring process location is proposed by combining two homogeneously weighted moving average (HWMA) control charts. The hybrid homogeneously weighted moving average (HHWMA) statistic is derived using two smoothing constants λ1 and λ2 . The average run length (ARL) and the standard deviation of the run length (SDRL) values of the HHWMA control chart are obtained and compared with some existing control charts for monitoring small and moderate shifts in the process location. The results of study show that the HHWMA control chart outperforms the existing control charts in many situations. The application of the HHWMA chart is demonstrated using a simulated data.  相似文献   

7.
8.
The in‐control performance of any control chart is highly associated with the accuracy of estimation for the in‐control parameter(s). For the risk‐adjusted Bernoulli cumulative sum (CUSUM) chart with a constant control limit, it had been shown that the estimation error could have a substantial effect on the in‐control performance. In our study, we examine the effect of estimation error on the in‐control performance of the risk‐adjusted Bernoulli CUSUM chart with dynamic probability control limits (DPCLs). Our simulation results show that the in‐control performance of risk‐adjusted Bernoulli CUSUM chart with DPCLs is also affected by the estimation error. The most important factors affecting estimation error are the specified desired in‐control average run length, the Phase I sample size, and the adverse event rate. However, the effect of estimation error is uniformly smaller for the risk‐adjusted Bernoulli CUSUM chart with DPCLs than for the corresponding chart with a constant control limit under various realistic scenarios. In addition, we found a substantial reduction in the mean and variation of the standard deviation of the in‐control run length when DPCLs are used. Therefore, use of DPCLs has yet another advantage when designing a risk‐adjusted Bernoulli CUSUM chart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
There is growing literature on new versions of “memory-type” control charts, where deceptively good zero-state average run-length (ARL) performance is misleading. Using steady-state run-length analysis in combination with the conditional expected delay (CED) metric, we show that the increasingly discussed progressive mean (PM) and homogeneously weighted moving average (HWMA) control charts should not be used in practice. Previously reported performance of methods based on these two approaches is misleading, as we found that performance is good only when a process change occurs at the very start of monitoring. Traditional alternatives, such as exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts, not only have more consistent detection behavior over a range of different change points, they can also lead to better out-of-control zero-state ARL performance when properly designed.  相似文献   

10.
The Lindley process defined for the queuing file domain is equivalent to the cumulative sum (CUSUM) process used for break-point detection in process control. The maximum of the Lindley process, called local score, is used to highlight atypical regions in biological sequences, and its distribution has been established by different manners. I propose here to use the local score and also a partial maximum of the Lindley process over the immediate past to create control charts. Stopping time corresponds to the first time where the statistic achieves a statistical significance less than a given threshold α in ]0,1[, the instantaneous first error rate. The local score p value is computed using existing theoretical results. I establish here the exact distribution of the partial maximum of the Lindley process. Performance of the control charts is evaluated by Monte Carlo estimation of the average run lengths for an in-control process (ARL0) and for an out-of-control process (ARL1). I also use the standard deviation of the run length (SdRL) and the extra quadratic loss (EQL). Comparison with the usual and recent control charts present in the literature shows that the local score control chart outperforms the others with a much larger ARL0 and ARL1 smaller or of the same order. Many interesting openings exist for the local score chart: not only Gaussian model but also any of them, Markovian dependance of the data, both location and dispersion monitoring at the same time can be considered.  相似文献   

11.
Control charts are the most popular tool of statistical process control for monitoring variety of processes. The detection ability of these control charts can be improved by introducing various transformations. In this study, we have enhanced the performance of CUSUM charts by introducing a link relative variable transformation technique. Link relative variable converts the original process variable in a form which is relative to its mean. So, the link relative represents the relative positioning of the observations. Average run length (ARL ) is used to compare our technique with the previous studies. The comparison shows the overall good detection performance of our scheme for a span of shifts in the mean. A real‐world example from the electrical engineering process is also included to demonstrate the application of proposed control chart.  相似文献   

12.
The run sum X ¯ control chart is usually investigated under the assumption of known process parameters. In practice, process parameters are rarely known and they need to be estimated from an in‐control Phase I dataset. However, different practitioners use different numbers of Phase I samples to estimate the process parameters. As a result, the commonly used performance measure, ie, the average run length becomes a random variable. In this study, we present a run sum X ¯ control chart with estimated process parameters and use the standard deviation of the average run length to evaluate the average of the average run length performance of the run sum X ¯ chart when process parameters are estimated. Based on the standard deviation of the average run length criterion, the number of Phase I samples required by the estimated process parameter–based run sum X ¯ chart to have an average of the average run length performance close to that obtained under the assumption of known process parameters is recommended.  相似文献   

13.
Control charts are one of the most powerful tools used to detect and control industrial process deviations in statistical process control. In this paper, a moving average control chart based on a robust scale estimator of standard deviation, namely, the sample median absolute deviation (MAD) statistic, for monitoring process dispersion, is proposed. A simulation study is conducted to evaluate the performance of the proposed moving average median absolute deviation (MA‐MAD) chart, in terms of average run length for various distributions. The results show that the moving average MAD chart performs well in detecting small and moderate shifts in process dispersion, especially when the normality assumption is violated. In addition, this chart is very efficient, especially when the quality characteristic follows a skewed distribution. Numerical and simulated examples are given at the end of the paper.  相似文献   

14.
The exponentially weighted moving average (EWMA), cumulative sum (CUSUM), and adaptive EWMA (AEWMA) control charts have had wide popularity because of their excellent speed in tracking infrequent process shifts, which are expected to lie within certain ranges. In this paper, we propose a new AEWMA dispersion chart that may achieve better performance over a range of dispersion shifts. The idea is to first consider an unbiased estimator of the dispersion shift using the EWMA statistic, and then based on the magnitude of this shift, select an appropriate value of the smoothing parameter to design an EWMA chart, named the AEWMA chart. The run length characteristics of the AEWMA chart are computed with the help of extensive Monte Carlo simulations. The AEWMA chart is compared with some of the existing powerful competitor control charts. It turns out that the AEWMA chart performs substantially and uniformly better than the EWMA‐S2, CUSUM‐S2, existing AEWMA, and HHW‐EWMA charts when detecting different kinds of shifts in the process dispersion. Moreover, an example is also used to explain the working and implementation of the proposed AEWMA chart.  相似文献   

15.
Control charts are widely known quality tools used to detect and control industrial process deviations in statistical process control. In the current paper, we propose a new single memory-type control chart, called the sum of squares triple exponentially weighted moving average control chart (referred as SS-TEWMA chart), that simultaneously detects shifts in the process mean and/or process dispersion. The run length performance of the proposed SS-TEWMA control chart is compared with that of the sum of squares EWMA, sum of squares double EWMA, sum of squares generally weighted moving average, and sum of squares double generally weighted moving average, control charts, through Monte Carlo simulations. The comparisons indicate that the proposed chart is more efficient, than the competing ones, in detecting small shifts in the process mean and/or variability for most of the considered scenarios, while it has comparable performance for some others in identifying large shifts in the process mean and small to large shifts in the process variability. Finally, two illustrative examples are provided to explain the application of the SS-TEWMA control chart.  相似文献   

16.
Control charts are developed to make the specific quality measures for a successful production process and follow normal distribution behaviors. But some real-life practices do not match such practices and exhibit some positively skewed behavior like lognormal distribution. The present study has considered this situation and proposed a monitoring control chart based on lognormal process variation using a repetitive sampling scheme. This concept proved better for detecting shifts as quickly as possible, and compared with the existing concept, results are elaborated through extensive tables. The average run lengths and standard deviations of the run lengths are being used as a performance evaluation measures and computed by using Monte Carlo simulations performed in R language. A real-life situation has been discussed in the example section to strengthen the proposed control chart concept in a real-life situation.  相似文献   

17.
Shewhart control charts are among the most popular control charts used to monitor process dispersion. To base these control charts on the assumption of known in-control process parameters is often unrealistic. In practice, estimates are used to construct the control charts and this has substantial consequences for the in-control and out-of-control chart performance. The effects are especially severe when the number of Phase I subgroups used to estimate the unknown process dispersion is small. Typically, recommendations are to use around 30 subgroups of size 5 each.

?We derive and tabulate new corrected charting constants that should be used to construct the estimated probability limits of the Phase II Shewhart dispersion (e.g., range and standard deviation) control charts for a given number of Phase I subgroups, subgroup size and nominal in-control average run-length (ICARL). These control limits account for the effects of parameter estimation. Two approaches are used to find the new charting constants, a numerical and an analytic approach, which give similar results. It is seen that the corrected probability limits based charts achieve the desired nominal ICARL performance, but the out-of-control average run-length performance deteriorate when both the size of the shift and the number of Phase I subgroups are small. This is the price one must pay while accounting for the effects of parameter estimation so that the in-control performance is as advertised. An illustration using real-life data is provided along with a summary and recommendations.  相似文献   

18.
In this paper, a resubmitted sampling-based successive sampling over two successive occasions control chart is proposed to monitor the underlying characteristic of interest. Auxiliary information of the first occasion is utilized to monitor the relative change in the study variable over the second occasion successively despite high degree of correlation. The structural and operational design is presented along with the comparative performance evaluation. The average run length is used as a performance evaluation measure and proved the argument in favor of the presented concept in comparison with the other auxiliary data control charts. The implementation is explained through two real examples.  相似文献   

19.
We propose a new multivariate CUSUM control chart, which is based on self adaption of its reference value according to the information from current process readings, to quickly detect the multivariate process mean shifts. By specifying the minimum magnitude of the process mean shift in terms of its non‐centrality parameter, our proposed control chart can achieve an overall performance for detecting a particular range of shifts. This adaptive feature of our method is based on two EWMA operators to estimate the current process mean level and make the detection at each step be approximately optimal. Moreover, we compare our chart with the conventional multivariate CUSUM chart. The advantages of our control chart detection for range shifts over the existing charts are greatly improved. The Markovian chain method, through which the average run length can be computed, is also presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The conventional cumulative sum (CUSUM) chart is usually designed based on a known shift size. In usual practice, shift size is often unknown and can be assumed to vary within an interval. With such a range of shift size, the dual CUSUM (DCUSUM) chart provides more sensitivity than the CUSUM chart. In this paper, we propose dual Crosier CUSUM (DCCUSUM) charts with and without fast initial response features to efficiently monitor the infrequent changes in the mean of a normally distributed process. Monte Carlo simulations are used to compute the run length characteristics of one‐sided and two‐sided DCCUSUM charts. These run length characteristics are compared with those of the CUSUM, Crosier CUSUM, Shewhart‐CUSUM, and DCUSUM charts in terms of the integral relative average run length. It turns out that the proposed chart shows better performance when detecting a range of mean shift sizes. A real dataset is considered to illustrate the implementation of existing and proposed charts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号