首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的 针对不均衡的印刷标志图像训练集构建的二分类模型,对少类的印刷套不准图像识别准确率低的问题,研究不均衡印刷标志图像套准状态的单分类模型识别方法。方法 提出支持向量数据描述方法,实现多类的印刷套准图像和少类的印刷套不准图像的准确识别。采用多类的印刷套准图像训练支持向量数据描述,构建模型。采用网格寻优方法和交叉验证方法确定模型的最佳参数 和 。利用模型对印刷标志图像套准状态进行识别。结果 采用文中提出的支持向量数据描述方法,对印刷标志图像套准状态识别获得的总体识别率a为0.9500,印刷套准图像和印刷套不准图像识别准确率的几何平均数Gmean为0.9513。结论 文中提出的方法获得的总体识别率a和识别率的几何平均数Gmean要优于实验中的其他方法。  相似文献   

2.
    
In today's manufacturing industries, if the quality characteristic of a product or a process is assumed to be represented by a functional relationship between the response variable and one or more explanatory variables, then the data generated from such a relationship are called profile data. Generally speaking, the functional relationship of the profile data rarely occurs in linear form, and the real data usually do not follow normal distribution. Thus, in this paper, the functional relationship of profile data is described via a nonparametric regression model and a nonparametric exponentially weighted moving average (EWMA) control chart is developed for detecting the process shifts for nonlinear profile data in the Phase II monitoring. We first fit the nonlinear profile data via a support vector regression model and use the fitted values to calculate the five metrics. Then, the nonparametric EWMA control chart with the five metrics can be constructed accordingly. Moreover, a simulation study is conducted to evaluate the detecting performance of the new control chart under various process shifts using the out‐of‐control average run length. Finally, a realistic nonlinear profile example is used to demonstrate the usefulness of our proposed nonparametric EWMA control chart and its monitoring schemes. It is expected that the proposed nonparametric EWMA control chart can enhance the monitoring efficiency for nonlinear profile data in the phase II study.  相似文献   

3.
4.
用支持向量机(Support Vector Machine,SVM)方法对水下运动目标辐射噪声的谱图进行高维空间下的最优划分,实现水下瞬态信号的有效检测。其基本思想是将时频谱图拆分成若干时频细胞单元(Time Frequency Cell,TFC),选择合适的高斯核向量机,寻找时频细胞单元间的差异性,进而实现对瞬态信号的检测。海试数据处理表明该方法检测瞬态信号的有效性,运算量小且稳健性高;与常规能量检测方法相比,更易确定检测门限,减少虚警。  相似文献   

5.
6.
    
The statistical learning classification techniques have been successfully applied to statistical process control problems. In this paper, we proposed a one‐sided control chart based on support vector machines (SVMs) and differential evolution (DE) algorithm to monitor a process with multivariate quality characteristics. The SVM classifier provides a continuous distance from the boundary, and the DE algorithm is used to obtain the optimal parameters of the SVM model by minimizing mean absolute error (MAE). The average run length of the proposed chart is computed using the Monte Carlo simulation approach. Several simulated cases are conducted using a multivariate normal distribution with 10 and 20 dimensions and three different process shift scenarios. In addition, we consider two non‐normal distribution cases. The ARL performance of the proposed chart is better than the distance‐based SVM chart. A real example is used to illustrate the application of the proposed control chart.  相似文献   

7.
直接根据多联机系统能耗数据的变化来判断导致能耗大幅波动的因素是很困难的。本文提出一种有效的可用于多联机系统的能耗评估与诊断方法:将支持向量回归(SVR)算法与单类支持向量机(OCSVM)算法相结合,首先通过提取系统能耗数据集特征,去除非稳态数据,根据提取的特征变量与系统能耗建立SVR模型,预测多联机系统能耗;然后将实际能耗值与预测能耗值之差和之比分别标准化,作为输入变量,建立单类支持向量机(OCSVM)模型进行样本判别,确定是否为导致系统能耗异常的原因,以此评估诊断多联机系统能耗情况。本文基于多联机能耗正常的数据集构建了能耗评估与诊断模型,并用多联机系统能耗异常数据集验证了模型的可靠性。结果表明:基于SVR-OCSVM模型的能耗评估与诊断模型具有较高的准确度,基本能达到70%以上。  相似文献   

8.
It is important to monitor manufacturing processes in order to improve product quality and reduce production cost. Statistical Process Control (SPC) is the most commonly used method for process monitoring, in particular making distinctions between variations attributed to normal process variability to those caused by ‘special causes’. Most SPC and multivariate SPC (MSPC) methods are parametric in that they make assumptions about the distributional properties and autocorrelation structure of in-control process parameters, and, if satisfied, are effective in managing false alarms/-positives and false-negatives. However, when processes do not satisfy these assumptions, the effectiveness of SPC methods is compromised. Several non-parametric control charts based on sequential ranks of data depth measures have been proposed in the literature, but their development and implementation have been rather slow in industrial process control. Several non-parametric control charts based on machine learning principles have also been proposed in the literature to overcome some of these limitations. However, unlike conventional SPC methods, these non-parametric methods require event data from each out-of-control process state for effective model building. The paper presents a new non-parametric multivariate control chart based on kernel distance that overcomes these limitations by employing the notion of one-class classification based on support vector principles. The chart is non-parametric in that it makes no assumptions regarding the data probability density and only requires ‘normal’ or in-control data for effective representation of an in-control process. It does, however, make an explicit provision to incorporate any available data from out-of-control process states. Experimental evaluation on a variety of benchmarking datasets suggests that the proposed chart is effective for process monitoring.  相似文献   

9.
Melanoma is the most deadly skin cancer. Early diagnosis is a challenge for clinicians. Current algorithms for skin lesions' classification focus mostly on segmentation and feature extraction. This article instead puts the emphasis on the learning process, testing the recognition performance of three different classifiers: support vector machine (SVM), artificial neural network and k‐nearest neighbor. Extensive experiments were run on a database of more than 5000 dermoscopy images. The obtained results show that the SVM approach outperforms the other methods reaching an average recognition rate of 82.5% comparable with those obtained by skilled clinicians. If confirmed, our data suggest that this method may improve classification results of a computer‐assisted diagnosis of melanoma. © 2010 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 20, 316–322, 2010  相似文献   

10.
冷水机组系统中,温度传感器出现故障会严重影响机组工作效率及使用寿命。针对冷水机组温度传感器偏差故障,本文提出一种基于单类支持向量机(one-class support vector machine,OC-SVM)的故障检测方法,采用冷水机组正常数据建立OCSVM模型,通过十折交叉验证法获得模型优化参数。分别采用工程实测数据和实验数据(共4组)对该方法进行了验证,结果表明:基于OC-SVM的方法能有效检测出4组冷水机组的温度传感器偏差故障。其中对于螺杆式冷水机组(数据集Ⅰ)的故障检测效果明显,当冷冻水侧温度传感器偏差故障幅值绝对值大于1℃时,检测效率达到100%。  相似文献   

11.
张敏  程文明 《工业工程》2012,15(5):125-129
针对目前多品种、复杂化的生产趋势,提出了一种基于自适应变异的粒子群算法(AMPSO)和支持向量机(SVM)的控制图失效模式识别的方法.利用SVM小样本学习能力,设计一对一的SVM多分类器进行控制图模式识别,并利用AMPSO算法优化SVM核函数的参数.通过对10种控制图模式(6种基本模式和4种混合模式)的20维特征仿真数据对该方法进行检验,并通过与BP、SVM、PSO-SVM识别方法的对比分析.仿真试验表明该方法有效提高了控制图模式的识别精度,达到98.14%.而BP仅有75%,为控制图在线实时识别提供了一种可行的途径.  相似文献   

12.
    
Remaining useful life (RUL) prediction plays an important role in predictive maintenance systems to support decision‐makers for arranging maintenance tasks and related resources. We propose a hybrid approach that is combined an exponential weighted moving average (EWMA) control chart for anomaly detection and machine learning models such as support vector regression (SVR) and random forest regression (RFR) with differential evolution (DE) algorithm to predict the RULs of ball bearings. Here, DE algorithm is used to find the optimal hyperparameters of SVR model. The datasets of ball bearings from the Prognostics Data Repository of NASA are used to compare the prediction performance of different methods. The degradation behavior of training data from the anomaly time to the end of life is used to transfer learning for the testing data in the SVR and RFR models. The results indicate that the proposed methods outperform the other four existing methods in terms of score. Therefore, the proposed hybrid approach is a reliable tool for the RUL prediction of ball bearings.  相似文献   

13.
基于一类超球面支持向量机的机械故障诊断研究   总被引:1,自引:0,他引:1  
针对机械故障诊断中故障类样本不易获取以及样本分布不均的问题,提出了基于一类超球面支持向量机(SVM)的故障诊断方法,该方法只需要对正常类样本进行训练.试验分析了异常类样本缺失对一类超球面支持向量机性能的影响,并提出模型参数优化选择方法,以提高分类模型的推广能力.分析了不同训练结果的分类能力,并对一类超球面支持向量机与一类超平面支持向量机的分类结果进行比较,验证了前者的正确性和有效性.  相似文献   

14.
组合核函数支持向量机在水中目标识别中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
陆阳  王海燕  田娜 《声学技术》2005,24(3):144-147
论文研究了支持向量机核函数构成条件以及不同核函数的特性,结合水中目标识别技术特点,提出了一种组合核函数支持向量机的方法。提取了基于小波变换的舰船辐射噪声奇异性、尺度-过零、尺度-能量特征,对水中目标进行了SVM分类识别。研究表明,基于组合核函数的支持向量机分类识别效果优于单独核函数的支持向量机识别效果。  相似文献   

15.
支撑向量机是基于有限数据的机器学习算法,主要研究如何从一些给定的观测数据获得目前尚不能通过原理分析得出的规律,利用这些规律去分析客观现象并对无法观测的数据进行预测。本文在已有的支撑向量机算法的基础上,提出了一种新的算法——ESVR算法,它是基于支撑向量回归机的改进算法,利用原有用于回归问题的SVM算法消除了孤立点对已知问题的影响。针对支撑向量机算法中核参数取值对推广性的影响较明显的特点,本文给出了一种核函数中参数的确定方法——渐进搜索法,它可以得到支撑向量机算法中核参数的取值范围,并具有推广误差较小的特点。数值实验表明它们具有较好的效果。  相似文献   

16.
17.
赵小松  李晓卫  聂斌 《工业工程》2012,15(3):92-97,129
为了解决多元非正态分布情况下的过程控制问题,提出基于数据深度的变点控制图,并对构建该控制图检验统计量的具体方法及控制流程进行了详细描述.为了检验该控制图的控制效果,采用服从二元伽马分布的样本数据对其进行了验证,并设置位置参数偏移范围为0.2至1.0,变点为14、24、34,几种情况分别检验其控制效果.数据仿真的结果表明:偏移越大,检测效果越好;偏移量小于0.7时,变点越大,检测效率越高;而当变点大于0.7时变点对检测效果的影响不明显.偏移量在0.1至0.4的范围内,变点越大,检测效果越好,但是这种边际效果在减小.  相似文献   

18.
19.
张乔微  李艳婷 《工业工程》2020,23(3):145-153
为了解决含顺序型和名义型变量混合型数据的监测问题,提出了一种基于LOF算法的多维混合型数据控制图(mixed-type data local outlier factor control chart,MLOF)。在监测过程变量变化的过程中,该控制图充分考虑了顺序型变量的等级特性和名义型变量的信息熵,基于数据的密度来衡量观测点的异常程度。分别使用基于信用卡申请数据集的仿真案例和基于德国信用卡数据集的实例,对比MLOF控制图和现有混合型数据控制图在异常点检测上的表现。仿真案例共模拟了30种监测场景。结果表明,在57%的场景中,MLOF控制图的综合表现都是最好的。而实例也验证了MLOF控制图更适用于数据量大、聚类情况复杂的混合型数据监测过程中。  相似文献   

20.
一种铝塑泡罩药品包装缺陷检测方法   总被引:2,自引:1,他引:1       下载免费PDF全文
方文星  王野 《包装工程》2019,40(1):133-139
目的针对铝塑泡罩药品人工检测时存在的包装缺陷,如效率低、成本高、稳定性差等,采用机器视觉技术对铝塑泡罩药品包装进行缺陷检测。方法采用快速鲁棒特征SURF提取算法、BOW算法和单分类支持向量机组成的缺陷检测算法框架,并完成铝塑泡罩药品包装缺陷检测系统的开发。通过搭建的实验平台获取280幅铝塑泡罩药品图像,并采用文中所提方法对180幅图像实施缺陷检测。结果实验结果显示,在阈值为1900、视觉单词数量为120、惩罚因子为0.9时,文中方法的准确率为99.4%。结论文中方法提高了铝塑泡罩药品包装缺陷检测的准确率和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号