首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Hybrid control charts have become part of statistical process control (SPC) but still, need more emphasis. Researchers are developing charts for joint monitoring of process mean and variance shifts just like Max-EWMA and their hybrid version using auxiliary information but are ignoring the effect of measurement error on the efficiency of charts. We propose maximum hybrid exponentially weighted moving average with measurement error using auxiliary information and name it Max-HEWMAMEAI control chart. The efficiency of this chart is proved through calculations of average run lengths (ARLs) and standard deviations of run lengths (SDRLs) using the Monte Carlo simulations method whereas, ARLs and ◂⋅▸SDRLs are shown in tabular form. The effect of measurement error on the efficiency of the chart has been analyzed and the impact of multiple measurements to reduce the error effect has been studied using the covariate model. Real-life application is also part of this article to support the simulation results.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Synthetic-type charts are efficient tools for process monitoring. They are easy to design and implement in practice. The properties of these charts are usually evaluated under the assumption of known process parameters. This assumption is sometimes violated in practice, and process parameters have to be estimated from different phase I data sets collected by different practitioners. This fact causes the between-practitioners variability among the properties of the synthetic-type charts designed for each practitioner. In fact, the shape of the run length distribution of the synthetic-type charts changes with the mean shift size. As a good alternative, the median run length (MRL) metric is argued to evaluate the properties of different control charts. In this paper, the MRL is used as a measure of the synthetic X¯ chart's performance, and the conditional MRL properties of the synthetic X¯ chart with unknown process parameters are investigated. Both the average MRL ( AMRL) and the standard deviation of MRL ( ◂⋅▸SDMRL) are used together to investigate the chart's properties when the process parameters are unknown. If the available number of phase I samples is not large enough to reduce the variability of the in-control MRL values to an acceptable level, a bootstrap-type approach is suggested to adjust the control limits of the synthetic X¯ chart and to further prevent many unwanted lower in-control MRL values.  相似文献   

11.
12.
Profile monitoring is one of the methods used in statistical process control (SPC) to understand the functional relationship between response and explanatory variables by tracking this relationship and estimating parameters. SPC is done in two phases: In Phase I, a statistical model is created and its parameters estimated using historical data. Phase II implements the statistical model and monitors the live ongoing process. Control charts are graphical tools used to monitor these functional relationships over time in both Phase I and Phase II. This study provides a step-by-step application for parametric, nonparametric, and semiparametric methods in profile monitoring and creates an in-depth guideline with comparative analysis studies for novice practitioners. A comparative analysis under each distributional assumption is conducted for various control charts.  相似文献   

13.
14.
15.
16.
17.
18.
19.
The sensitivity of a monitoring scheme depends on many factors including the variance of the charting statistic which is very important in the computation of the control limits. This paper discusses the computation of the variance of the recently proposed hybrid homogeneously weighted moving average (HHWMA) X¯ scheme which was based on an incorrect assumption. The correct variance is used to evaluate the run-length characteristics of the HHWMA X¯ scheme. It is observed that the incorrect variance has a significant impact on the sensitivity (or performance) of the HHWMA X¯ scheme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号