首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart‐type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA‐based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are commonly used for monitoring the process mean. In this paper, a new hybrid EWMA (HEWMA) control chart is proposed by mixing two EWMA control charts. An interesting feature of the proposed control chart is that the traditional Shewhart and EWMA control charts are its special cases. Average run lengths are used to evaluate the performances of each of the control charts. It is worth mentioning that the proposed HEWMA control chart detects smaller shifts substantially quicker than the classical CUSUM, classical EWMA and mixed EWMA–CUSUM control charts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Control charts are widely used for process monitoring. They show whether the variation is due to common causes or whether some of the variation is due to special causes. To detect large shifts in the process, Shewhart‐type control charts are preferred. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are generally used to detect small and moderate shifts. Shewhart‐type control charts (without additional tests) use only current information to detect special causes, whereas CUSUM and EWMA control charts also use past information. In this article, we proposed a control chart called progressive mean (PM) control chart, in which a PM is used as a plotting statistic. The proposed chart is designed such that it uses not only the current information but also the past information. Therefore, the proposed chart is a natural competitor for the classical CUSUM, the classical EWMA and some recent modifications of these two charts. The conclusion of this article is that the performance of the proposed PM chart is superior to the compared ones for small and moderate shifts, and its performance for large shifts is better (in terms of the average run length). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The exponentially weighted moving average (EWMA) control chart is a memory chart that is widely used in process monitoring to spot small and persistent disturbances in the process parameter(s). This chart requires normality of the quality characteristic(s) of interest and a smaller choice of smoothing parameter. Any deviations from these conditions affect its performance in terms of efficiency and robustness. For the said two concerns, this study develops a new mixed EWMA chart under progressive setup (mixed EWMA–progressive mean [MEP] chart). The proposed MEP chart combines the advantages of robustness (under nonnormal scenarios) and high sensitivity to small and persistent shifts in the process mean. The performance of the proposed MEP control chart is evaluated in terms of average run length and some other characteristics of run length distribution. The assessment of the proposed chart is made under standard normal, student's t, gamma, Laplace, logistic, exponential, contaminated normal and lognormal distributions. The performance of the proposed MEP chart is also compared with some existing competitors including the classical EWMA, the classical cumulative sum (CUSUM), the homogenously weighted moving average, the mixed EWMA–CUSUM, the mixed CUSUM–EWMA and the double EWMA charts. The analysis reveals that the proposal of this study offers a superior design structure relative to its competing counterparts. An application from substrates manufacturing process (in which flow width of the resist is the key quality characteristic) is also provided in the study.  相似文献   

5.
In this paper, we propose distribution‐free mixed cumulative sum‐exponentially weighted moving average (CUSUM‐EWMA) and exponentially weighted moving average‐cumulative sum (EWMA‐CUSUM) control charts based on the Wilcoxon rank‐sum test for detecting process mean shifts without any distributional assumption of the underlying quality process. The performances of the proposed charts are measured through the average run‐length, relative mean index, average extra quadratic loss, and average ratio of the average run‐length and performance comparison index. It is found that the proposed charts perform better than its counterparts considered in this paper under non‐normal distributions and outperform the classical mixed CUSUM‐EWMA and EWMA‐CUSUM charts in many cases under the normal distribution. The effect of the phase I sample size is also investigated on the phase II performance of the proposed charts. A numerical illustration is given to demonstrate the implementation and simplicity of the proposed charts.  相似文献   

6.
In recent years, the memory‐type control charts—exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)—along with the adaptive and dual control‐charting structures have received considerable attention because of their excellent ability in providing an overall good detection over a range of mean‐shift sizes. These adaptive memory‐type control charts include the adaptive exponentially weighted moving average (AEWMA), dual CUSUM, and adaptive CUSUM charts. In this paper, we propose a new AEWMA chart for efficiently monitoring the process mean. The idea is to first design an unbiased estimator of the mean shift using the EWMA statistic and then adaptively update the smoothing constant of the EWMA chart. The run length profiles of the proposed AEWMA chart are computed using extensive Monte Carlo simulations. Based on a comprehensive comparative study, it turns out that the proposed AEWMA chart performs better than the existing AEWMA, adaptive CUSUM, dual CUSUM, and Shewhart‐CUSUM charts, in terms of offering more balanced protection against mean shifts of different sizes. An example is also used to explain the working of the existing and proposed control charts.  相似文献   

7.
A multivariate extension of the exponentially weighted moving average (EWMA) control chart is presented, and guidelines given for designing this easy-to-implement multivariate procedure. A comparison shows that the average run length (ARL) performance of this chart is similar to that of multivariate cumulative sum (CUSUM) control charts in detecting a shift in the mean vector of a multivariate normal distribution. As with the Hotelling's χ2 and multivariate CUSUM charts, the ARL performance of the multivariate EWMA chart depends on the underlying mean vector and covariance matrix only through the value of the noncentrality parameter. Worst-case scenarios show that Hotelling's χ2 charts should always be used in conjunction with multivariate CUSUM and EWMA charts to avoid potential inertia problems. Examples are given to illustrate the use of the proposed procedure.  相似文献   

8.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been widely accepted because of their fantastic speed in identifying small‐to‐moderate unusual variations in the process parameter(s). Recently, a new CUSUM chart has been proposed that uses the EWMA statistic, called the CS‐EWMA chart, for monitoring the process variability. On similar lines, in order to further improve the detection ability of the CS‐EWMA chart, we propose a CUSUM chart using the generally weighted moving average (GWMA) statistic, named the GWMA‐CUSUM chart, for monitoring the process dispersion. Monte Carlo simulations are used to compute the run length profiles of the GWMA‐CUSUM chart. On the basis of the run length comparisons, it turns out that the GWMA‐CUSUM chart outperforms the CUSUM and CS‐EWMA charts when identifying small variations in the process variability. A simulated dataset is also used to explain the working and implementation of the CS‐EWMA and GWMA‐CUSUM charts.  相似文献   

9.
Measurement error is often occurred in statistical process control. The effect of a linearly covariate error model on the exponentially weighted moving average (EWMA) median and cumulative sum (CUSUM) median charts is investigated. The results indicate that the EWMA median and CUSUM median charts are significantly affected in the presence of measurement errors. We compared the performance of the EWMA median and CUSUM median charts by using Markov chain method in the average run length and the standard deviation of the run length. We concluded that the CUSUM median chart for small shifts and the EWMA median chart for larger shifts are recommended. Two examples are provided to illustrate the application of the EWMA and CUSUM median charts with measurement errors.  相似文献   

10.
A control chart is a graphical tool used for monitoring a production process and quality improvement. One such charting procedure is the Shewhart‐type control chart, which is sensitive mainly to the large shifts. For small shifts, the cumulative sum (CUSUM) control charts and exponentially weighted moving average (EWMA) control charts were proposed. To further enhance the ability of the EWMA control chart to quickly detect wide range process changes, we have developed an EWMA control chart using the median ranked set sampling (RSS), median double RSS and the double median RSS. The findings show that the proposed median‐ranked sampling procedures substantially increase the sensitivities of EWMA control charts. The newly developed control charts dominate most of their existing counterparts, in terms of the run‐length properties, the Average Extra Quadratic Loss and the Performance Comparison Index. These include the classical EWMA, fast initial response EWMA, double and triple EWMA, runs‐rules EWMA, the max EWMA with mean‐squared deviation, the mixed EWMA‐CUSUM, the hybrid EWMA and the combined Shewhart–EWMA based on ranks. An application of the proposed schemes on real data sets is also given to illustrate the implementation and procedural details of the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The exponentially weighted moving average (EWMA), cumulative sum (CUSUM), and adaptive EWMA (AEWMA) control charts have had wide popularity because of their excellent speed in tracking infrequent process shifts, which are expected to lie within certain ranges. In this paper, we propose a new AEWMA dispersion chart that may achieve better performance over a range of dispersion shifts. The idea is to first consider an unbiased estimator of the dispersion shift using the EWMA statistic, and then based on the magnitude of this shift, select an appropriate value of the smoothing parameter to design an EWMA chart, named the AEWMA chart. The run length characteristics of the AEWMA chart are computed with the help of extensive Monte Carlo simulations. The AEWMA chart is compared with some of the existing powerful competitor control charts. It turns out that the AEWMA chart performs substantially and uniformly better than the EWMA‐S2, CUSUM‐S2, existing AEWMA, and HHW‐EWMA charts when detecting different kinds of shifts in the process dispersion. Moreover, an example is also used to explain the working and implementation of the proposed AEWMA chart.  相似文献   

13.
Memory-type auxiliary-information-based (AIB) control charts are very effective in detecting small-to-moderate shifts in the process mean. In this study, we first develop a unique uniformly minimum variance unbiased estimator of the process mean that requires information on the study variable as well as on several correlated auxiliary variables. Then, based on this estimator, adaptive and nonadaptive CUSUM and EWMA charts are developed with either fixed or variable sampling interval for monitoring the process mean, namely, the multiple AIB (MAIB) charts. The proposed charts encompass existing charts with or without the auxiliary information. The run length characteristics of the proposed charts are computed with the Monte Carlo simulations when sampling from a multivariate normal distribution. Based on the run length comparisons, it is found that the MAIB charts are uniformly and substantially more sensitive than the AIB charts when monitoring the process mean. Real datasets are also considered to explain the implementation of the MAIB charts.  相似文献   

14.
Exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts are potentially powerful statistical process monitoring tools because of their excellent speed in detecting small to moderate persistent process shifts. Recently, synthetic EWMA (SynEWMA) and synthetic CUSUM (SynCUSUM) control charts have been proposed based on simple random sampling (SRS) by integrating the EWMA and CUSUM control charts with the conforming run length control chart, respectively. These synthetic control charts provide overall superior detection over a range of mean shift sizes. In this article, we propose new SynEWMA and SynCUSUM control charts based on ranked set sampling (RSS) and median RSS (MRSS) schemes, named SynEWMA‐RSS and SynEWMA‐MRSS charts, respectively, for monitoring the process mean. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed control charts. The run length performances of these control charts are compared with their existing powerful counterparts based on SRS, RSS and MRSS schemes. It turns out that the proposed charts perform uniformly better than the Shewhart, optimal synthetic, optimal EWMA, optimal CUSUM, near‐optimal SynEWMA, near‐optimal SynCUSUM control charts based on SRS, and combined Shewhart‐EWMA control charts based on RSS and MRSS schemes. A similar trend is observed when constructing the proposed control charts based on imperfect RSS schemes. An application to a real data is also provided to demonstrate the implementations of the proposed SynEWMA and SynCUSUM control charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we propose 3 new control charts for monitoring the lower Weibull percentiles under complete data and Type‐II censoring. In transforming the Weibull distribution to the smallest extreme value distribution, Pascaul et al (2017) presented an exponentially weighted moving average (EWMA) control chart, hereafter referred to as EWMA‐SEV‐Q, based on a pivotal quantity conditioned on ancillary statistics. We extended their concept to construct a cumulative sum (CUSUM) control chart denoted by CUSUM‐SEV‐Q. We provide more insights of the statistical properties of the monitoring statistic. Additionally, in transforming a Weibull distribution to a standard normal distribution, we propose EWMA and CUSUM control charts, denoted as EWMA‐YP and CUSUM‐YP, respectively, based on a pivotal quantity for monitoring the Weibull percentiles with complete data. With complete data, the EWMA‐YP and CUSUM‐YP control charts perform better than the EWMA‐SEV‐Q and CUSUM‐SEV‐Q control charts in terms of average run length. In Type‐II censoring, the EWMA‐SEV‐Q chart is slightly better than the CUSUM‐SEV‐Q chart in terms of average run length. Two numerical examples are used to illustrate the applications of the proposed control charts.  相似文献   

16.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are potentially powerful process monitoring tool because of their excellent speed in detecting small to moderate shifts in the process parameters. These control charts can be further improved by integrating them with the conforming run length control chart, resulting in the synthetic CUSUM (SynCUSUM) and synthetic EWMA (SynEWMA) charts. In this paper, we enhance the detection abilities of the SynCUSUM and SynEWMA charts using the auxiliary information. With suitable assumptions, the proposed control charts encompass the existing SynCUSUM, SynEWMA, CUSUM, and EWMA charts. Extensive Monte Carlo simulations are used to study the run length profiles of the proposed control charts. It turns out that the proposed near‐optimal control charts with the auxiliary information perform uniformly and substantially better than the existing near‐optimal SynCUSUM, SynEWMA, CUSUM, and EWMA charts. The proposed and existing control charts are also illustrated with the help of an example. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
The exponentially weighted moving average (EWMA) control chart is a well‐known statistical process monitoring tool because of its exceptional pace in catching infrequent variations in the process parameter(s). In this paper, we propose new EWMA charts using the auxiliary information for efficiently monitoring the process dispersion, named the auxiliary‐information–based (AIB) EWMA (AIB‐EWMA) charts. These AIB‐EWMA charts are based on the regression estimators that require information on the quality characteristic under study as well as on any related auxiliary characteristic. Extensive Monte Carlo simulation are used to compute and study the run length profiles of the AIB‐EWMA charts. The proposed charts are comprehensively compared with a recent powerful EWMA chart—which has been shown to be better than the existing EWMA charts—and an existing AIB‐Shewhart chart. It turns out that the proposed charts perform uniformly better than the existing charts. An illustrative example is also given to explain the implementation and working of the AIB‐EWMA charts.  相似文献   

18.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as a potentially powerful process monitoring tool of the statistical process control because of their excellent speed in detecting small to moderate shifts in the process parameters. Recently, new EWMA and synthetic control charts have been proposed based on the best linear unbiased estimator of the scale parameter using ordered ranked set sampling (ORSS) scheme, named EWMA‐ORSS and synthetic‐ORSS charts, respectively. In this paper, we extend the work and propose a new synthetic EWMA (SynEWMA) control chart for monitoring the process dispersion using ORSS, named SynEWMA‐ORSS chart. The SynEWMA‐ORSS chart is an integration of the EWMA‐ORSS chart and the conforming run length chart. Extensive Monte Carlo simulations are used to estimate the run length performances of the proposed control chart. A comprehensive comparison of the run length performances of the proposed and the existing powerful control charts reveals that the SynEWMA‐ORSS chart outperforms the synthetic‐R, synthetic‐S, synthetic‐D, synthetic‐ORSS, CUSUM‐R, CUSUM‐S, CUSUM‐ln S2, EWMA‐ln S2 and EWMA‐ORSS charts when detecting small shifts in the process dispersion. A similar trend is observed when the proposed control chart is constructed under imperfect rankings. An application to a real data is also provided to demonstrate the implementation and application of the proposed control chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) charts are famous statistical tools, to handle special causes and to bring the process back in statistical control. Shewhart charts are useful to detect large shifts, whereas EWMA and CUSUM are more sensitive for small to moderate shifts. In this study, we propose a new control chart, named mixed CUSUM‐EWMA chart, which is used to monitor the location of a process. The performance of the proposed mixed CUSUM‐EWMA control chart is measured through the average run length, extra quadratic loss, relative average run length, and a performance comparison index study. Comparisons are made with some existing charts from the literature. An example with real data is also given for practical considerations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
We propose a new multivariate CUSUM control chart, which is based on self adaption of its reference value according to the information from current process readings, to quickly detect the multivariate process mean shifts. By specifying the minimum magnitude of the process mean shift in terms of its non‐centrality parameter, our proposed control chart can achieve an overall performance for detecting a particular range of shifts. This adaptive feature of our method is based on two EWMA operators to estimate the current process mean level and make the detection at each step be approximately optimal. Moreover, we compare our chart with the conventional multivariate CUSUM chart. The advantages of our control chart detection for range shifts over the existing charts are greatly improved. The Markovian chain method, through which the average run length can be computed, is also presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号