首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monitoring of any manufacturing, production, or industrial process can be controlled and improved by removing these special cause of variations using control charts. Shewhart-type control charts are effective to control a large amount of special variations, whereas, cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) charts detect small and moderate variations efficiently in the process parameters. Monitoring of location parameter can be done with mean control charts under the assumption that the parameters are known or correctly estimated from in-control samples and data are free from outliers (but in practice data occasionally have outliers). In this study, we have proposed generalized mixed EWMA-CUSUM median control charts structures for known and unknown parameters based on auxiliary variables for detecting shifts in process location parameter. The proposed charts are compared with the corresponding charts for the mean, based on contaminated and uncontaminated data. Different performance measures are used to evaluate the performance of proposed control charts and revealed through results that the median-based charts are more sensitive to detect a shift in process location parameter in the presence of outliers. An illustrative example using real data is also shown for practical consideration.  相似文献   

2.
Control chart is a well-known tool for monitoring the performance of an ongoing process. The variability of a process is an important parameter that may deteriorate the process performance if it is not taken care on time. In this study, we have proposed some new auxiliary information-based exponentially weighted moving average (EWMA) charts for improved monitoring of process variability. We employed auxiliary information in some useful forms including ratio, regression, power ratio, ratio exponential, ratio regression, power ratio regression, and ratio exponential regression estimators. The performance of the newly developed charts is evaluated and compared with some existing charts (viz., the NEWMA, the Improved R, the Synthetic R, and the classical R charts), using some useful measures such as average run length (ARL), extra quadratic loss, and relative ARL. The comparative analysis revealed that the proposed charts outperform their counterparts, especially when there is a strong relationship between the study and the auxiliary variables. Finally, an illustrative example is provided for the monitoring of air quality data.  相似文献   

3.
The exponentially weighted moving average (EWMA) control chart is a well‐known statistical process monitoring tool because of its exceptional pace in catching infrequent variations in the process parameter(s). In this paper, we propose new EWMA charts using the auxiliary information for efficiently monitoring the process dispersion, named the auxiliary‐information–based (AIB) EWMA (AIB‐EWMA) charts. These AIB‐EWMA charts are based on the regression estimators that require information on the quality characteristic under study as well as on any related auxiliary characteristic. Extensive Monte Carlo simulation are used to compute and study the run length profiles of the AIB‐EWMA charts. The proposed charts are comprehensively compared with a recent powerful EWMA chart—which has been shown to be better than the existing EWMA charts—and an existing AIB‐Shewhart chart. It turns out that the proposed charts perform uniformly better than the existing charts. An illustrative example is also given to explain the implementation and working of the AIB‐EWMA charts.  相似文献   

4.
5.
It is customary to increase the sensitivity of a control chart using an efficient estimator of the underlying process parameter which is being monitored. In this paper, using an auxiliary information-based (AIB) mean estimator, we propose dual multivariate CUSUM (DMCUSUM) and mixed DMCUSUM (MDMCUSUM) charts, called the AIB-DMCUSUM and AIB-MDMCUSUM charts, with and without fast initial response features for monitoring the mean vector of a multivariate normally distributed process. The DMCUSUM chart combines two similar-type multivariate CUSUM (MCUSUM) charts while the MDMCUSUM chart combines two different-type MCUSUM charts, into a single chart. The objective of two multivariate subcharts in the DMCUSUM/MDMCUSUM chart is to simultaneously detect small-to-moderate and moderate-to-large shifts in the process mean vector. Monte Carlo simulations are used to compute the run length characteristics, including the average run length (ARL), extra quadratic loss, and integral of the relative ARL. Based on detailed run length comparisons, it turns out that the AIB-DMCUSUM and AIB-MDMCUSUM charts uniformly and substantially outperform the DMCUSUM and MDMCUSUM charts when detecting different sizes of shift in the process mean vector. A real dataset is used to explain the implementation of proposed AIB multivariate charts.  相似文献   

6.
Memory-type auxiliary-information-based (AIB) control charts are very effective in detecting small-to-moderate shifts in the process mean. In this study, we first develop a unique uniformly minimum variance unbiased estimator of the process mean that requires information on the study variable as well as on several correlated auxiliary variables. Then, based on this estimator, adaptive and nonadaptive CUSUM and EWMA charts are developed with either fixed or variable sampling interval for monitoring the process mean, namely, the multiple AIB (MAIB) charts. The proposed charts encompass existing charts with or without the auxiliary information. The run length characteristics of the proposed charts are computed with the Monte Carlo simulations when sampling from a multivariate normal distribution. Based on the run length comparisons, it is found that the MAIB charts are uniformly and substantially more sensitive than the AIB charts when monitoring the process mean. Real datasets are also considered to explain the implementation of the MAIB charts.  相似文献   

7.
Existing multivariate cumulative sum (MCUSUM) control charts involve entire associated variables of a process to monitor variations in the mean vector. In this study, we have offered MCUSUM control charts with principal component method (PCM). The proposed MCUSUM control charts with PCM capture the whole process variations using fewer latent variables (principal components) while preserving as much data variability as possible. To show the significance of proposed MCUSUM control charts with PCM, various performance measures are considered including average run length, extra quadratic loss, relative average run length, and performance comparison index. Furthermore, performance measures are calculated through advanced Monte Carlo simulation method to explore the behavior of proposed MCUSUM control charts and to conduct comparative analysis with existing models. Results revealed that proposed MCUSUM control charts with PCM are efficient to detect variations timely by involving smaller number of principal components instead of considering entire associated variables. Also, proposed MCUSUM control charts have the ability to accommodate the features of existing control charts, which are illustrated as the special cases. Besides, to highlight the implementation mechanism and advantages of proposed MCUSUM control charts with PCM, a real-life example from wind turbine process is included.  相似文献   

8.
The coefficient of variation (CV) is an important quality characteristic when the process variance is a function of the process mean for a production process. In this paper, we develop an auxiliary information–based (AIB) estimator for estimating the squared CV, along with its approximated mean and variance. This estimator is then used to devise new one-sided EWMA charts for monitoring the increases or decreases in the squared CV of a normal process, named the AIB-EWMA CV charts. In addition, the sensitivities of these control charts are also enhanced with the fast initial response feature. The Monte Carlo simulation method is used to compute the run length characteristics of the proposed CV charts. Based on detailed run length comparisons, it is found that the proposed AIB-EWMA CV charts are uniformly and substantially better than the existing EWMA CV charts when detecting different kinds of upward/downward shifts in the squared CV. The proposed charts are also applied to a real dataset to support the proposed theory.  相似文献   

9.
In this paper, we propose an auxiliary-information-based (AIB) double EWMA-t (AIB-DEWMA-t) chart for monitoring the process mean. The DEWMA-t chart encompasses the EWMA-t and AIB-EWMA-t charts. The Monte Carlo simulations are used to compute the run length characteristics of the AIB-DEWMA-t chart. Based on detailed run length comparisons, it is found that the AIB-DEWMA-t chart may uniformly and substantially outperform the AIB-EWMA-t chart when detecting different shifts in the process mean. In addition, the AIB-DEWMA-t chart is uniformly more sensitive than the DEWMA-t chart. Similar trends are observed when comparing these control charts with the variable sampling interval feature. A real dataset is also considered to demonstrate the implementation of the proposed chart.  相似文献   

10.
Multiple auxiliary information-based (MAIB) memory-type t charts are proposed with fixed and variable sampling intervals for an improved monitoring of the process mean, which include adaptive/nonadaptive cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) t charts. These control charts are constructed based on a unique uniformly minimum variance unbiased estimator of the process mean that requires information on a study variable as well as on several correlated auxiliary variables. The Monte Carlo simulation technique is used to compute the run length characteristics of the proposed charts when sampling from a multivariate normal distribution. The run length comparisons show that the proposed MAIB-t charts outperform their existing auxiliary information based (AIB) and non-AIB t charts, where the normalizing transformation is used for all considered t charts in order to have uniformity in the comparisons. A real data application is also given to support the proposed theory.  相似文献   

11.
In statistical process control, it is a common practice to increase the sensitivity of a control chart with the help of an efficient estimator of the underlying process parameter. In this paper, we consider an efficient estimator that requires information on several study variables along with one or more auxiliary variables when estimating the mean of a multivariate normally distributed process. Using this auxiliary‐information‐based (AIB) process mean estimator, we propose new multivariate EWMA (MEWMA), double MEWMA (DMEWMA), and multivariate CUSUM (MCUSUM) charts for monitoring the process mean, denoted by the AIB‐MEWMA, AIB‐DMEWMA, and AIB‐MCUSUM charts, respectively. The run length characteristics of the proposed multivariate charts are computed using Monte Carlo simulations. The proposed charts are compared with their existing counterparts in terms of the run length characteristics. It turns out that the AIB‐MEWMA, AIB‐DMEWMA, and AIB‐MCUSUM charts are uniformly and substantially better than the MEWMA, DMEWMA, and MCUSUM charts, respectively, when detecting different shifts in the process mean. A real dataset is considered to explain the implementation of the proposed and existing multivariate control charts.  相似文献   

12.
A control chart is a simple yet powerful tool that is extensively adopted to monitor shifts in the process mean. In recent years, auxiliary‐information–based (AIB) control charts have received considerable attention as these control charts outperform their counterparts in monitoring changes in the process parameter(s). In this article, we integrate the conforming run length chart with the existing AIB double sampling (AIB DS) chart to propose an AIB synthetic DS chart for the process mean. The AIB synthetic DS chart also encompasses the existing synthetic DS chart. A detailed discussion on the construction, optimization, and evaluation of the run length profiles is provided for the proposed control chart. It is found that the optimal AIB synthetic DS chart significantly outperforms the existing AIB Shewhart, optimal AIB synthetic, and AIB DS charts in detecting various shifts in the process mean. An illustrative example is given to demonstrate the implementation of the existing and proposed AIB control charts.  相似文献   

13.
A control chart is very useful to control assignable causes which detect the shifted process parameters (eg, mean and dispersion). Simultaneous monitoring of the process parameters is a well‐known approach utilized for the bilateral processes. In the current study, we proposed the blended control chart that monitors the process mean and process coefficient of variation simultaneously. Further, the sensitivity of control chart is enhanced by incorporating an auxiliary variable. We have utilized the concept of EWMA chart and also the log transformation to transform the distribution of sample coefficient of variation to the normal distribution for structuring a joint monitoring control chart. The performance comparison among proposed control charts is presented. On the basis of ARLs and SDRLs, several advantages of the proposed control charts are diagnosed. The empirical evidence is also provided to support proposed control chart with a real‐life dataset.  相似文献   

14.
When using control charts to monitor manufacturing processes, the exponentially weighted moving average (EWMA) control chart is useful for detecting persistent shifts in the process parameter. This paper proposes enhancements to the applications of the EWMA control chart for those scenarios where the exact measurement of process units is difficult and expensive, but the visual ordering of the units can be done easily. The proposed charts use an auxiliary variable that is correlated with the process variable to provide efficient monitoring of shifts in the process mean and are formulated based on ranked set sampling (RSS) and median RSS schemes (MRSS). Simulation results showed that the proposed charting schemes are more efficient in detecting a shift in the process mean than the classical EWMA control chart and its modification. An example is provided to show the application of the proposed charts using a simulated benchmark process: the continuous stirred tank reactor (CSTR).  相似文献   

15.
Shewhart control charts are among the most popular control charts used to monitor process dispersion. To base these control charts on the assumption of known in-control process parameters is often unrealistic. In practice, estimates are used to construct the control charts and this has substantial consequences for the in-control and out-of-control chart performance. The effects are especially severe when the number of Phase I subgroups used to estimate the unknown process dispersion is small. Typically, recommendations are to use around 30 subgroups of size 5 each.

?We derive and tabulate new corrected charting constants that should be used to construct the estimated probability limits of the Phase II Shewhart dispersion (e.g., range and standard deviation) control charts for a given number of Phase I subgroups, subgroup size and nominal in-control average run-length (ICARL). These control limits account for the effects of parameter estimation. Two approaches are used to find the new charting constants, a numerical and an analytic approach, which give similar results. It is seen that the corrected probability limits based charts achieve the desired nominal ICARL performance, but the out-of-control average run-length performance deteriorate when both the size of the shift and the number of Phase I subgroups are small. This is the price one must pay while accounting for the effects of parameter estimation so that the in-control performance is as advertised. An illustration using real-life data is provided along with a summary and recommendations.  相似文献   

16.
Control charts are developed to make the specific quality measures for a successful production process and follow normal distribution behaviors. But some real-life practices do not match such practices and exhibit some positively skewed behavior like lognormal distribution. The present study has considered this situation and proposed a monitoring control chart based on lognormal process variation using a repetitive sampling scheme. This concept proved better for detecting shifts as quickly as possible, and compared with the existing concept, results are elaborated through extensive tables. The average run lengths and standard deviations of the run lengths are being used as a performance evaluation measures and computed by using Monte Carlo simulations performed in R language. A real-life situation has been discussed in the example section to strengthen the proposed control chart concept in a real-life situation.  相似文献   

17.
A number of recent research studies have applied queueing theory as an approximate modeling tool to mathematically describe industrial systems, which include manufacturing, distribution, and service, for instance. Among the main observable characteristics in queues, the number of users in the system can be controlled to keep waiting times as minimal as possible. The design of efficient control charts is an attempt to monitor and control such systems. Control charts are proposed to monitor infinite queues with Markovian arrivals, exponential service times, and s identical parallel servers. The proposed charts monitor traffic intensities, which are the ratio between the arrival rate and the service rate, estimated through the number of users in the queueing system at random epochs. The effectiveness and efficiency of the proposed approaches in terms of the average run lengths are established by a comprehensive set of Monte Carlo simulations.  相似文献   

18.
In this paper, we propose control charts for monitoring changes in the Weibull shape parameter β. These charts are based on the range of a random sample from the smallest extreme value distribution. The control chart limits depend only on the sample size, the desired stable average run length (ARL), and the stable value of β. We derive control limits for both one‐ and two‐sided control charts. They are unbiased with respect to the ARL. We discuss sample size requirements if the stable value of βis estimated from past data. The proposed method is applied to data on the breaking strengths of carbon fibers. We recommend one‐sided charts for detecting specific changes in βbecause they are expected to signal out‐of‐control sooner than the two‐sided charts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
20.
In this paper, the robustness of the multivariate exponentially weighted moving average (MEWMA) control chart to non‐normal data is examined. Two non‐normal distributions of interest are the multivariate distribution and the multivariate gamma distribution. Recommendations for constructing MEWMA control charts when the normality assumption may be violated are provided. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号