首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Berweger S  Atkin JM  Xu XG  Olmon RL  Raschke MB 《Nano letters》2011,11(10):4309-4313
The simultaneous nanometer spatial confinement and femtosecond temporal control of an optical excitation has been a long-standing challenge in optics. Previous approaches using surface plasmon polariton (SPP) resonant nanostructures or SPP waveguides have suffered from, for example, mode mismatch, or possible dependence on the phase of the driving laser field to achieve spatial localization. Here we take advantage of the intrinsic phase- and amplitude-independent nanofocusing ability of a conical noble metal tip with weak wavelength dependence over a broad bandwidth to achieve a 10 nm spatially and few-femtosecond temporally confined excitation. In combination with spectral pulse shaping and feedback on the second-harmonic response of the tip apex, we demonstrate deterministic arbitrary optical waveform control. In addition, the high efficiency of the nanofocusing tip provided by the continuous micro- to nanoscale mode transformation opens the door for spectroscopy of elementary optical excitations in matter on their natural length and time scales and enables applications from ultrafast nano-opto-electronics to single molecule quantum coherent control.  相似文献   

2.
In a single gallium nanoparticulate, self-assembled (from an atomic beam) in a nanoaperture at the tip of a tapered optical fiber, we have observed reversible light-induced reflectivity changes associated with a sequence of transformations between a number of structural forms with different optical properties, stimulated by optical excitation at nanowatt power levels. The ability to change the optical properties of a nanoparticulate using structural transformations provides a new mechanism for photonic functionality on the nanoscale.  相似文献   

3.
Sevinc PC  Wang X  Wang Y  Zhang D  Meixner AJ  Lu HP 《Nano letters》2011,11(4):1490-1494
We have probed single surface states and the involved interfacial charge transfer coupling on the TiO(2) surface using confocal as well as tip-enhanced near-field topographic-spectroscopic imaging analysis on a niobium-doped rutile TiO(2)(110) surface. The confocal images excited with a radially polarized donut mode render ring-shaped excitation patterns typical for quantum systems with two perpendicular transition dipole moments. The tip-enhanced near-field optical images of single surface states are visualized by the strong exciton plasmon-polariton coupling localized at the subdomain boundaries with a spatial resolution of ~15 nm (far beyond the optical diffraction limit). We suggest that the abundant surface states in the doped TiO(2) generate excitons under laser excitation which are strongly coupled to the surface plasmon-polaritons of the Au tip. Moreover, the interfacial electronic molecule-substrate coupling has been characterized by probing the molecule-perturbed surface states distribution and the associated specific Raman vibrational modes. The imaging and characterization of the surface states and their distributions on TiO(2) surfaces at nanoscale are critically relevant to a deep understanding of interfacial electron transfer dynamics and energetics involving in solar energy conversion, photocatalysis, and mechanistic understanding of surface-enhanced Raman scattering spectroscopy.  相似文献   

4.
Individual fluorescent polystyrene nanospheres (<10-100-nm diameter) and individual fluorescently labeled DNA molecules were dispersed on mica and analyzed using time-resolved fluorescence spectroscopy and atomic force microscopy (AFM). Spatial correlation of the fluorescence and AFM measurements was accomplished by (1) positioning a single fluorescent particle into the near diffraction-limited confocal excitation region of the optical microscope, (2) recording the time-resolved fluorescence emission, and (3) measuring the intensity of the excitation laser light scattered from the apex of an AFM probe tip and the AFM topography as a function of the lateral position of the tip relative to the sample substrate. The latter measurements resulted in concurrent high-resolution (approximately 10-20 nm laterally) images of the laser excitation profile of the confocal microscope and the topography of the sample. Superposition of these optical and topographical images enabled unambiguous identification of the sample topography residing within the excitation region of the optical microscope, facilitating the identification and structural characterization of the nanoparticle(s) or biomolecule(s) responsible for the fluorescence signal observed in step 2. These measurements also provided the lateral position of the particles relative to the laser excitation profile and the surrounding topography with nanometer-scale precision and the relationship between the spectroscopic and structural properties of the particles. Extension of these methods to the study of other types of nanostructured materials is discussed.  相似文献   

5.
Silver coated SiN and SiO(2) tips have been fabricated for use with a bottom-illumination tip-enhanced Raman spectroscopy (TERS) setup with a 488 nm laser excitation. SiN tips with 50-60 nm of deposited Ag give the best TERS enhancements for brilliant cresyl blue test analyte spin-coated on a glass slide. Ag nanoparticles on SiN or SiO(2) rather than Si tips are better for TERS because of the proximity of the wavelengths of their surface plasmon resonance to 488 nm. Adjustments of tilt angle of the metallized tip with respect to the surface plane is shown to considerably raise the intensities of the TERS signals, even from tips that initially appear to be rather non-enhancing. This work helps to enable the more frequent use of the 488 nm laser for nanoscale chemical analysis with both TERS and fluorescence imaging in the same setup.  相似文献   

6.
Optical microscopy with nanoscale resolution, beyond that which is possible with conventional diffraction-limited microscopy, may be achieved by scanning a nanoantenna in close proximity to a sample surface. This review will first aim to provide an overview of the basic principles of this technique of scanning near-field optical microscopy (SNOM), before moving on to consider the most widely implemented form of this microscopy, in which the sample is illuminated through a small aperture held less than 10 nm from the sample surface for optical imaging with a resolution of ca. 50 nm. As an example of the application of this microscopy, the results of SNOM measurements of light-emitting polymer nanostructures are presented. In particular, SNOM enables the unambiguous identification of the different phases present in the nanostructures, through the local analysis of the fluorescence from the polymers. The exciting new possibilities for high-resolution optical microscopy and spectroscopy promised by apertureless SNOM techniques are also considered. Apertureless SNOM may involve local scattering of light from a sample surface by a tip, local enhancement of an optical signal by a metal tip, or the use of a fluorescent molecule or nanoparticle attached to a tip as a local optical probe of a surface. These new optical nanoprobes offer the promise of optical microscopy with true nanometre spatial resolution.  相似文献   

7.
Jones AC  Raschke MB 《Nano letters》2012,12(3):1475-1481
Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy.  相似文献   

8.
J Xu  X Zhuang  P Guo  Q Zhang  W Huang  Q Wan  W Hu  X Wang  X Zhu  C Fan  Z Yang  L Tong  X Duan  A Pan 《Nano letters》2012,12(9):5003-5007
Compact wavelength-sensitive optical components are desirable for optical information processing and communication in photonic integrated system. In this work, optical waveguiding along single composition-graded CdS(x)Se(1-x) nanowires were systematically investigated. Under a focused laser excitation, the excited light can be guided passively along the bandgap-increased direction of the nanowire, keeping the photonic energy of the guided light almost unchanged during the whole propagation. In comparison, the excited light is guided actively through incessantly repeated band-to-band reabsorption and re-emitting processes along the bandgap-decreased direction, resulting in a gradual wavelength conversion during propagation. On the basis of this wavelength-converted waveguiding, a concept of nanoscale wavelength splitter is demonstrated by assembling a graded nanowire with several composition-uniform nanowires into branched nanowire structure. Our study indicates that composition-graded semiconductor nanowires would open new exciting opportunities in developing new wavelength-sensitive optical components for integrated nanophotonic devices.  相似文献   

9.
Toyoda K  Miyamoto K  Aoki N  Morita R  Omatsu T 《Nano letters》2012,12(7):3645-3649
We discovered for the first time that light can twist metal to control the chirality of metal nanostructures (hereafter, chiral metal nanoneedles). The helicity of optical vortices is transferred to the constituent elements of the irradiated material (mostly melted material), resulting in the formation of chiral metal nanoneedles. The chirality of these nanoneedles could be controlled by just changing the sign of the helicity of the optical vortex. The tip curvature of these chiral nanoneedles was measured to be <40 nm, which is less than 1/25th of the laser wavelength (1064 nm). Such chiral metal nanoneedles will enable us to selectively distinguish the chirality and optical activity of molecules and chemical composites on a nanoscale and they will provide chiral selectivity for nanoscale imaging systems (e.g., atomic force microscopes), chemical reactions on plasmonic nanostructures, and planar metamaterials.  相似文献   

10.
We extend the concepts of phase, polarization, and feedback control of matter to develop a general approach for guiding light in the nanoscale via nanoparticle arrays. The phase and polarization of the excitation source are first introduced as tools for control over the pathway of light at array intersections. Genetic algorithms are next applied as a systematic design tool, wherein both the excitation field parameters and the structural parameters of the nanoparticle array are optimized to make devices with desired functionality. Implications to research fields such as single molecule spectroscopy, spatially confined chemistry, optical logic, and nanoscale sensing are envisioned.  相似文献   

11.
Chen X  Wang X 《Nanotechnology》2011,22(7):075204
We report on a systematic study of highly enhanced optical field and its induced thermal transport in nanotips under laser irradiation. The effects on electric field distribution caused by curvature radius, tip aspect ratio, and polarization angle of the incident laser are studied. Our Poynting vectors' study clearly shows that when a laser interacts with a metal tip, it is bent around the tip and concentrated under the apex, where extremely high field enhancement appears. This phenomenon is more like a liquid flow being forced/squeezed to go through a narrow channel. As the tip-substrate distance increases, the peak field enhancement decreases exponentially. A shift of field peak position away from the tip axis is observed. For the incident light, only its component along the tip axis direction has a contribution to the electric field enhancement under the tip apex. The optimum tip apex radius for field enhancement is about 9 nm when the half taper angle is 10°. For a tip with a fixed radius of 30 nm, field enhancement increases with the half taper angle when it is less than 25°. The thermal transport inside the nanoscale tungsten tips due to absorption of incident laser light is explored using the finite element method. A small fraction of light penetrates into the tip. As the polarization angle or apex radius increases, the peak apex temperature decreases. The peak apex temperature goes down as the half taper angle increases, even though the mean laser intensity inside the tip increases, revealing a very strong effect of the taper angle on thermal transport.  相似文献   

12.
Tip-enhanced optical spectroscopy   总被引:1,自引:0,他引:1  
Spectroscopic methods with high spatial resolution are essential for understanding the physical and chemical properties of nanoscale materials including biological proteins, quantum structures and nanocomposite materials. In this paper, we describe microscopic techniques which rely on the enhanced electric field near a sharp, laser-irradiated metal tip. This confined light-source can be used for the excitation of various optical interactions such as two-photon excited fluorescence or Raman scattering. We study the properties of the enhanced fields and demonstrate fluorescence and Raman imaging with sub-20 nm resolution.  相似文献   

13.
Demonstrated herein is the optical-field-induced enhancement of the formation of a confined nanowater meniscus using a distance-regulated quartz tuning fork-atomic force microscope (QTF-AFM) with a 780 nm laser. While a pulled optical fiber tip approaches the surface, the laser is suddenly turned on and focuses on the front spot of the tip by the shape of the pulled optical fiber, which plays the role of an objective lens and induces the gathering effect of the water molecules directed to the electromagnetic-field gradient in air. This phenomenon facilitates a new boundary condition to form a long-range confined nano-scale liquid bridge between the tip and the surface. After the pulling of the optical fiber, 20-nm-thick gold was sputtered on the apex (diameter: approximately 100 nm) of the tip to guide and focus the beam on the spot. The critical power of the laser to overcome the barrier for the formation of a new boundary is 100 microW at the distance of 22 nm from the substrate.  相似文献   

14.
We report the new results on the direct synthesis of nanostructured silicon carbide (SiC) materials using the pulsed laser deposition technique. Scanning electron microscopy images revealed that SiC nanoholes, nanosprouts, nanowires, and nanoneedles were obtained. The crystallographic structure, chemical composition, and bond structure of the nanoscale SiC materials were investigated using X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman scattering spectroscopy. The transverse optical mode and longitudinal optical mode in Raman spectra were found to become sharper as the substrate temperature was increased, while the material structure evolved from amorphous to crystalline.  相似文献   

15.
A surface plasmon polariton is a collective oscillation of free electrons at a metal–dielectric interface. As wave phenomena, surface plasmon polaritons can be focused with the use of an appropriate excitation geometry of metal structures. In the adiabatic approximation, we demonstrate a possibility to control nanoscale short pulse superfocusing based on generation of a radially polarized surface plasmon polariton mode of a conical metal needle in view of wave reflection. The results of numerical simulations of femtosecond pulse propagation along a nanoneedle are discussed. The space–time evolution of a pulse for the near field strongly depends on a linear chirp of an initial laser pulse, which can partially compensate wave dispersion. The field distribution is calculated for different metals, chirp parameters, cone opening angles and propagation distances. The electric field near a sharp tip is described as a field of a fictitious time-dependent electric dipole located at the tip apex.  相似文献   

16.
We have studied inhomogeneously broadened optical spectra of the Yb3+ ion in calcium niobium gallium garnet crystals using selective laser excitation, time-resolved luminescence spectroscopy, and 2 F 5/2 luminescence decay measurements under excitation in different portions of the absorption spectrum. We have identified spectral features due to individual optical centers differing in excitation and luminescence wavelengths and excited-state lifetime. Tentative structures of the optical centers responsible for the inhomogeneous broadening of the spectra are described.  相似文献   

17.
In the 28 years since its discovery, surface-enhanced Raman scattering (SERS) has progressed from model system studies of pyridine on a roughened silver electrode to state-of-the-art surface science studies and real-world sensing applications. Each year, the number of SERS publications increases as nanoscale material design techniques advance and the importance of trace analyte detection increases. To achieve the lowest limits of detection, both the relationship between surface nanostructure and laser excitation wavelength and the analyte-surface binding chemistry must be carefully optimised. This work exploits the highly tunable nature of nanoparticle optical properties to establish the optimisation conditions. Two methods are used to study the optimised conditions of the SERS substrate: plasmon-sampled and wavelength-scanned surfaced Raman excitation spectroscopy (SERES). The SERS enhancement condition is optimised when the energy of the localised surface plasmon resonance of the nanostructures lies between the energy of the excitation wavelength and the energy of the vibration band of interest. These optimised conditions enabled the development of SERS-based sensors for the detection of a Bacillus anthracis biomarker and glucose in a serum-protein matrix.  相似文献   

18.
Light-based diagnostics and therapy have become indispensable tools in the field of cancer nanomedicine. Various optical imaging modalities with tomographic capability have been developed to visualize cellular and organismic distributions of molecules. Microscopic pharmacokinetics and the tumor-targeting efficacy of nanoscale effectors can now be precisely evaluated. Moreover, phototherapy using intense laser light has been widely used for treating cancers. Using light-active nanoscale effectors, photothermal and photodynamic therapies on superficial tumors can be achieved with low-illumination lasers. Consequently, for the next generation of photo-medical techniques, the use of near infrared (NIR) excitation sources on NIR-activatable nanoparticles may offer deeper light penetration owing to less extensive scattering and absorption by endogenous chromophores in the NIR spectral region. Therefore, treatments and biodetection within higher tissue volumes and with less side effects (e.g. overheating) may be successfully implemented. This comprehensive review covers the state-of-the-art technologies on (a) advanced laser light sources appropriate for deep tissue theranostics, (b) types of laser interactions with pure-NIR and NIR-upconverting nanomaterials, (c) current development of NIR and multi-photon nanoparticles, (d) application fields of NIR nanomaterials in cancer theranostics, and (e) nanotoxicology of NIR nanoscale effectors for cancer treatment.  相似文献   

19.
Li H  Yen CF  Sivasankar S 《Nano letters》2012,12(7):3731-3735
We describe a new technique, standing wave axial nanometry (SWAN), to image the axial location of a single nanoscale fluorescent object with sub-nanometer accuracy and 3.7 nm precision. A standing wave, generated by positioning an atomic force microscope tip over a focused laser beam, is used to excite fluorescence; axial position is determined from the phase of the emission intensity. We use SWAN to measure the orientation of single DNA molecules of different lengths, grafted on surfaces with different functionalities.  相似文献   

20.
Noble metal nanostructures support plasmon resonances—collective oscillation of charge carriers at optical frequencies—and serve as effective tools to create bright light sources at the nanoscale. These sources are useful in broad application areas including, super-resolution imaging and spectroscopy, nanolithography, and near-field optomechanical transducers. The feasibility of these applications relies on efficient conversion of free-space propagating light to plasmons. Recently, we demonstrated a hybrid nanofocusing scheme for efficient coupling of light to plasmons at the apex of a scanning probe. In the approach, free-space light is coupled to propagating surface plasmon polaritons (SPPs) on the tapered shaft of the scanning probe. The SPPs propagate adiabatically towards the probe tip where they are coupled to localized plasmons (LSPs). The nanofocusing scheme was explored in a near-field scanning optical microscope for super-resolution imaging, near-field transduction of nanomechanical vibrations, and local detection of ultrasound. Owing to the strong concentration of light at the probe, significant heating of the tip and a sample positioned in the optical near-field is expected. This paper investigates the local heating produced by the plasmonic nanofocusing probe under steady-state conditions using the tip-enhanced Raman scattering approach. In addition, a finite element model is explored to study the coupling of free propagating light to LSPs, and to estimate the temperature rise expected in a halfspace heated by absorption of the LSPs. This study has implications for exploring the plasmonic nanofocusing probe in heat-assisted nanofabrication and fundamental studies of nanoscale heat transport in materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号