首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article compares the effectiveness and robustness of nine typical control charts for monitoring both process mean and variance, including the most effective optimal and adaptive sequential probability ratio test (SPRT) charts. The nine charts are categorized into three types (the type, CUSUM type and SPRT type) and three versions (the basic version, optimal version and adaptive version). While the charting parameters of the basic charts are determined by common wisdoms, the parameters of the optimal and adaptive charts are designed optimally in order to minimize an index average extra quadratic loss for the best overall performance. Moreover, the probability distributions of the mean shift δµ and standard deviation shift δσ are studied explicitly as the influential factors in a factorial experiment. The main findings obtained in this study include: (1) From an overall viewpoint, the SPRT‐type chart is more effective than the CUSUM‐type chart and type chart by 15 and 73%, respectively; (2) in general, the adaptive chart outperforms the optimal chart and basic chart by 16 and 97%, respectively; (3) the optimal CUSUM chart is the most effective fixed sample size and sampling interval chart and the optimal SPRT chart is the best choice among the adaptive charts; and (4) the optimal sample sizes of both the charts and the CUSUM charts are always equal to one. Furthermore, this article provides several design tables which contain the optimal parameter values and performance indices of 54 charts under different specifications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
It is customary to increase the sensitivity of a control chart using an efficient estimator of the underlying process parameter which is being monitored. In this paper, using an auxiliary information-based (AIB) mean estimator, we propose dual multivariate CUSUM (DMCUSUM) and mixed DMCUSUM (MDMCUSUM) charts, called the AIB-DMCUSUM and AIB-MDMCUSUM charts, with and without fast initial response features for monitoring the mean vector of a multivariate normally distributed process. The DMCUSUM chart combines two similar-type multivariate CUSUM (MCUSUM) charts while the MDMCUSUM chart combines two different-type MCUSUM charts, into a single chart. The objective of two multivariate subcharts in the DMCUSUM/MDMCUSUM chart is to simultaneously detect small-to-moderate and moderate-to-large shifts in the process mean vector. Monte Carlo simulations are used to compute the run length characteristics, including the average run length (ARL), extra quadratic loss, and integral of the relative ARL. Based on detailed run length comparisons, it turns out that the AIB-DMCUSUM and AIB-MDMCUSUM charts uniformly and substantially outperform the DMCUSUM and MDMCUSUM charts when detecting different sizes of shift in the process mean vector. A real dataset is used to explain the implementation of proposed AIB multivariate charts.  相似文献   

3.
Memory-type multivariate charts have been widely recognized as a potentially powerful process monitoring tool because of their excellent speed in detecting small-to-moderate shifts in the mean vector of a multivariate normally distributed process, namely, the multivariate EWMA (MEWMA), double MEWMA, Crosier multivariate CUSUM (MCUSUM), and Pignatiello and Runger MCUSUM charts. These multivariate charts are based on the assumption that the covariance matrix is known in advance; but, it may not be known in practice. It is thus not possible to use these multivariate charts unless a large Phase I dataset is available from an in-control process. In this paper, we propose multivariate charts with fixed and variable sampling intervals for the process mean vector when the covariance matrix is estimated from sample. Using the Monte Carlo simulation method, the run length characteristics of the multivariate charts are computed. It is shown that the in-control and out-of-control run length performances of the proposed multivariate charts are robust to the changes in the process covariance matrix, while the existing multivariate charts are not. A real dataset is taken to explain the implementation of the proposed multivariate charts.  相似文献   

4.
Control charts are popular monitoring tools in statistical process control toolkit. These are used to identify assignable causes in the process parameters (location and/or dispersion). These assignable causes result in a shift in the process parameter(s). The shift can be categorized into three sizes (small, moderate, and large). Memory control charts such as the exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts are effective for identifying small-to-moderate shift(s) in the process. Likewise, mixed memory control charts are useful for efficient process monitoring. In this study, we have proposed two new mixed memory control charts based on auxiliary information named MxMEC and MxMCE control charts to improve the efficiency of these mixed charts. The MxMEC chart is a merger of the auxiliary information based MxEWMA chart and the classical CUSUM chart. Likewise, the MxMCE chart integrates the auxiliary information based MxCUSUM with the classical EWMA chart. The proposed MxMEC and MxMCE charts are evaluated through famous performance measures including average run length, extra quadratic loss, relative average run length, and performance comparison index. The performance of the study proposals is compared with the existing counterparts such as the classical CUSUM and EWMA, MxCUSUM, MxEWMA, MEC, MCE, and runs rules-based CUSUM charts. The comparisons revealed the superiority of the proposed charts against other competing charts particularly for small-to-moderate shifts in the process location. Finally, a real-life data is used to show the implementation procedure of the proposed charts in practical situations.  相似文献   

5.
Memory-type auxiliary-information-based (AIB) control charts are very effective in detecting small-to-moderate shifts in the process mean. In this study, we first develop a unique uniformly minimum variance unbiased estimator of the process mean that requires information on the study variable as well as on several correlated auxiliary variables. Then, based on this estimator, adaptive and nonadaptive CUSUM and EWMA charts are developed with either fixed or variable sampling interval for monitoring the process mean, namely, the multiple AIB (MAIB) charts. The proposed charts encompass existing charts with or without the auxiliary information. The run length characteristics of the proposed charts are computed with the Monte Carlo simulations when sampling from a multivariate normal distribution. Based on the run length comparisons, it is found that the MAIB charts are uniformly and substantially more sensitive than the AIB charts when monitoring the process mean. Real datasets are also considered to explain the implementation of the MAIB charts.  相似文献   

6.
Control charts are developed to make the specific quality measures for a successful production process and follow normal distribution behaviors. But some real-life practices do not match such practices and exhibit some positively skewed behavior like lognormal distribution. The present study has considered this situation and proposed a monitoring control chart based on lognormal process variation using a repetitive sampling scheme. This concept proved better for detecting shifts as quickly as possible, and compared with the existing concept, results are elaborated through extensive tables. The average run lengths and standard deviations of the run lengths are being used as a performance evaluation measures and computed by using Monte Carlo simulations performed in R language. A real-life situation has been discussed in the example section to strengthen the proposed control chart concept in a real-life situation.  相似文献   

7.
In the context of a disease outbreak detection, a prime interest is to only detect increases in the process mean. It is thus desirable to have a directionally sensitive multivariate chart that can effectively detect either increases or decreases in the process mean vector. In this paper, with a suitable transformation that truncates multivariate observations either above or below the process mean vector, we propose one-sided and two one-sided MCUSUM charts for monitoring the mean of a multivariate normal process. Among the proposed charts, the one-sided MCUSUM charts are directionally sensitive, while the two one-sided MCUSUM charts are directionally insensitive. In addition, the fast initial response feature is also incorporated into the proposed charts to enhance their sensitivities against initial process shifts. The run length characteristics of these control charts are computed with the Monte Carlo simulation. Based on the run length comparisons, it is found that the proposed charts are more sensitive than the existing charts when detecting moderate-to-large shifts in the process mean. The proposed charts are also applied on real datasets to support the theory.  相似文献   

8.
Control charts, based on ranked set sampling schemes, had been proposed recently for efficient monitoring of process location. All the proposals in the literature are based on the ideal assumption of normally distributed quality characteristics. No study as of yet investigated the performance of location charts based on ranked set sampling for non‐normal processes. In this study, we investigated the location chart based on simple random sampling (SRS) and three well‐known rank‐based schemes ie, ranked set sampling (RSS), median ranked set sampling (MRSS), and extreme ranked set sampling (ERSS), considering normal and a variety of non‐normal parent distributions. Both heavy‐tailed symmetric and skewed cases have been considered in this study. The performance of the charts is evaluated using average run length (ARL), extra quadratic loss (EQL), and relative ARL (RARL) measures. A real life example is also presented that details the monitoring of pH levels in water for an experiment conducted to study the reproduction of Mysids. The study will help quality practitioners to choose the chart based on an efficient sampling scheme for normal and non‐normal processes.  相似文献   

9.
Monitoring disturbances in process dispersion using control chart is mostly based on the assumption that the quality characteristic follows normal distribution, which is not the case in many real-life situations. This paper proposes a set of new dispersion charts based on the homogeneously weighted moving average (HWMA) scheme, for efficient detection of shifts in process standard deviation (σ). These charts are based on a variety of σ estimators and are investigated for normal as well as heavy tailed symmetric and skewed distributions. The shift detection ability of the charts is evaluated using different run length characteristics, such as average run length (ARL), extra quadratic loss (EQL), and relative ARL measures. The performance of the proposed HWMA control charts is also compared with the existing EWMA dispersion charts, using different design parameters. Furthermore, an illustrative example is presented to monitor the vapor pressure in a distillation process.  相似文献   

10.
In many service and manufacturing industries, process monitoring involves multivariate data, instead of univariate data. In these situations, multivariate charts are employed for process monitoring. Very often when the mean vector shifts to an out-of-control situation, the exact shift size is unknown; hence, multivariate charts for monitoring a range of the mean shift sizes in the mean vector are adopted. In this paper, directionally sensitive weighted adaptive multivariate CUSUM charts are developed for monitoring a range of the mean shift sizes. Directionally sensitive charts are useful in situations where the aim lies in monitoring either an increasing or a decreasing shift in the mean vector of the quality characteristics of interest. The Monte Carlo simulation is used to compute the run length characteristics in comparing the sensitivities of the proposed and existing multivariate CUSUM charts. In general, the directionally sensitive and weighted adaptive features enhance the sensitivities of the proposed multivariate CUSUM charts in comparison with the existing multivariate CUSUM charts without the adaptive feature or those that are directionally invariant. It is also found that the variable sampling interval feature enhances the sensitivities of the proposed and existing charts as compared to their fixed sampling interval counterparts. The implementation of the proposed charts in detecting upward and downward shifts in the in-control process mean vector is demonstrated using two different datasets.  相似文献   

11.
The CUSUM (C) charts are well recognized as a potentially advanced process monitoring tools because of their sensitivity against small and moderate shifts. In this paper, we first improve the sensitivity of the Brownian motion–based C (BC) chart with an appropriate transformation, named new BC (NBC) chart, for monitoring moderate and large shifts in the mean of a normal process. Then, using the control charting structure of the Crosier C (CC) chart, we propose the NBCC (NBC with CC structure) chart. In addition, for efficiently detecting a mean shift within an interval, dual version of these control charts are also proposed, named the dual NBC (DNBC) and dual NBCC (DNBCC) charts. Moreover, the fast initial response feature is also incorporated into the proposed charts. Using the Monte Carlo simulation, the run length properties of the proposed charts are computed. The run length performances of the existing and proposed charts are compared using the extra quadratic loss and integral relative average run length as performance criterion. It turns out that the NBC and NBCC (DNBC and DNBCC) charts are uniformly more sensitive than the C, CC, and NBC (dual C and dual CC) charts when detecting the mean shifts in small, moderate, and large intervals, where the DNBCC chart outperforms all considered charts. The proposed charts are also applied on real data sets to support the proposed theory.  相似文献   

12.
The coefficient of variation (CV) is an important quality characteristic when the process variance is a function of the process mean for a production process. In this paper, we develop an auxiliary information–based (AIB) estimator for estimating the squared CV, along with its approximated mean and variance. This estimator is then used to devise new one-sided EWMA charts for monitoring the increases or decreases in the squared CV of a normal process, named the AIB-EWMA CV charts. In addition, the sensitivities of these control charts are also enhanced with the fast initial response feature. The Monte Carlo simulation method is used to compute the run length characteristics of the proposed CV charts. Based on detailed run length comparisons, it is found that the proposed AIB-EWMA CV charts are uniformly and substantially better than the existing EWMA CV charts when detecting different kinds of upward/downward shifts in the squared CV. The proposed charts are also applied to a real dataset to support the proposed theory.  相似文献   

13.
In this paper, we propose control charts for monitoring changes in the Weibull shape parameter β. These charts are based on the range of a random sample from the smallest extreme value distribution. The control chart limits depend only on the sample size, the desired stable average run length (ARL), and the stable value of β. We derive control limits for both one‐ and two‐sided control charts. They are unbiased with respect to the ARL. We discuss sample size requirements if the stable value of βis estimated from past data. The proposed method is applied to data on the breaking strengths of carbon fibers. We recommend one‐sided charts for detecting specific changes in βbecause they are expected to signal out‐of‐control sooner than the two‐sided charts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In statistical process control, it is a common practice to increase the sensitivity of a control chart with the help of an efficient estimator of the underlying process parameter. In this paper, we consider an efficient estimator that requires information on several study variables along with one or more auxiliary variables when estimating the mean of a multivariate normally distributed process. Using this auxiliary‐information‐based (AIB) process mean estimator, we propose new multivariate EWMA (MEWMA), double MEWMA (DMEWMA), and multivariate CUSUM (MCUSUM) charts for monitoring the process mean, denoted by the AIB‐MEWMA, AIB‐DMEWMA, and AIB‐MCUSUM charts, respectively. The run length characteristics of the proposed multivariate charts are computed using Monte Carlo simulations. The proposed charts are compared with their existing counterparts in terms of the run length characteristics. It turns out that the AIB‐MEWMA, AIB‐DMEWMA, and AIB‐MCUSUM charts are uniformly and substantially better than the MEWMA, DMEWMA, and MCUSUM charts, respectively, when detecting different shifts in the process mean. A real dataset is considered to explain the implementation of the proposed and existing multivariate control charts.  相似文献   

15.
The exponentially weighted moving average (EWMA) control chart is a well‐known statistical process monitoring tool because of its exceptional pace in catching infrequent variations in the process parameter(s). In this paper, we propose new EWMA charts using the auxiliary information for efficiently monitoring the process dispersion, named the auxiliary‐information–based (AIB) EWMA (AIB‐EWMA) charts. These AIB‐EWMA charts are based on the regression estimators that require information on the quality characteristic under study as well as on any related auxiliary characteristic. Extensive Monte Carlo simulation are used to compute and study the run length profiles of the AIB‐EWMA charts. The proposed charts are comprehensively compared with a recent powerful EWMA chart—which has been shown to be better than the existing EWMA charts—and an existing AIB‐Shewhart chart. It turns out that the proposed charts perform uniformly better than the existing charts. An illustrative example is also given to explain the implementation and working of the AIB‐EWMA charts.  相似文献   

16.
In this article, a new t‐chart based on generalized multiple dependent state (GMDS) sampling is proposed for efficient monitoring of a process by assuming that the time between events follows the exponential distribution. The proposed t‐chart has two pair of control limits and utilizes the past sample information with the current sample information. The control chart coefficients are estimated by considering different values of the in‐control average run lengths. The proposed t‐chart is compared with the existing chart by using the out‐of‐control average run length and extra quadratic loss function. The comparison reveals that the proposed charting strategy has better shift detection ability in process mean. An illustrative example is given for the practical implementation of the proposed chart.  相似文献   

17.
The traditional control charts produce frequent false alarm signals in the presence of autocorrelation. The implementation of the modified chart scheme is a way of handling the problem of autocorrelation in control charts. In modified charts, the standard control limits of the traditional charts are adjusted to offset the influence because of the autocorrelation. The exponentially weighted moving average– and cumulative sum–modified charts are 2 widely used charts for monitoring autocorrelated data. These charts have design parameters in their formulation, and the choice of these parameters play significant roles in the detection of out‐of‐control situations. In reality, the magnitude of the mean shift is uncertain, and this leads to a difficulty in the choice of design parameters by the practitioner. The use of optimal parameters can enhance process performance in such situations. In this paper, we determine optimal design parameters for the charts using an exhaustive search procedure. In the optimization process, we determine the parameters that produce the smallest extra quadratic loss (EQL) value for each autocorrelation coefficient. This criterion measures the anticipated loss attributed to poor quality in the process. The loss in quality is lowered by minimizing the EQL and the combination of parameters in the chart that yields the smallest EQL has a better detection ability over the entire shift range. For the purpose of this work, we concentrate on autocorrelation that can be specifically modelled with autoregressive models. This article provides the practitioner with optimal parameters that can be used to enhance the overall effectiveness of the charts over an entire shift range.  相似文献   

18.
Shewhart control charts are among the most popular control charts used to monitor process dispersion. To base these control charts on the assumption of known in-control process parameters is often unrealistic. In practice, estimates are used to construct the control charts and this has substantial consequences for the in-control and out-of-control chart performance. The effects are especially severe when the number of Phase I subgroups used to estimate the unknown process dispersion is small. Typically, recommendations are to use around 30 subgroups of size 5 each.

?We derive and tabulate new corrected charting constants that should be used to construct the estimated probability limits of the Phase II Shewhart dispersion (e.g., range and standard deviation) control charts for a given number of Phase I subgroups, subgroup size and nominal in-control average run-length (ICARL). These control limits account for the effects of parameter estimation. Two approaches are used to find the new charting constants, a numerical and an analytic approach, which give similar results. It is seen that the corrected probability limits based charts achieve the desired nominal ICARL performance, but the out-of-control average run-length performance deteriorate when both the size of the shift and the number of Phase I subgroups are small. This is the price one must pay while accounting for the effects of parameter estimation so that the in-control performance is as advertised. An illustration using real-life data is provided along with a summary and recommendations.  相似文献   

19.
Multiple auxiliary information-based (MAIB) memory-type t charts are proposed with fixed and variable sampling intervals for an improved monitoring of the process mean, which include adaptive/nonadaptive cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) t charts. These control charts are constructed based on a unique uniformly minimum variance unbiased estimator of the process mean that requires information on a study variable as well as on several correlated auxiliary variables. The Monte Carlo simulation technique is used to compute the run length characteristics of the proposed charts when sampling from a multivariate normal distribution. The run length comparisons show that the proposed MAIB-t charts outperform their existing auxiliary information based (AIB) and non-AIB t charts, where the normalizing transformation is used for all considered t charts in order to have uniformity in the comparisons. A real data application is also given to support the proposed theory.  相似文献   

20.
The CUmulative SUM (CUSUM) charts have sensitive nature against small and moderate shifts that occur in the process parameter(s). In this article, we propose the CUSUM and combined Shewhart-CUSUM charts for monitoring the process mean using the best linear unbiased estimator of the location parameter based on ordered double-ranked set sampling (RSS) scheme, where the CUSUM chart refers to the Crosier's CUSUM chart. The run-length characteristics of the proposed CUSUM charts are computed with the Monte Carlo simulations. The run-length profiles of the proposed CUSUM charts are compared with those of the CUSUM charts based on simple random sampling, RSS, and ordered RSS schemes. It is found that the proposed CUSUM charts uniformly outperform their existing counterparts when detecting all different kinds of shifts in the process mean. A real data set is also considered to explain the implementation of the proposed CUSUM charts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号