首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this communication, we report on a technique to fabricate solid-state polythiophene-based dye sensitized solar cells (DSSCs) that can be directly compared to analogous liquid junction devices. The device configuration is based on non-porous TiO2 thin films and one of the three undoped polythiophene hole conductors: poly[3-(11 diethylphosphorylundecyl) thiophene], P3PUT, poly(4-undecyl-2,2′-bithiophene), P4UBT, or poly(3-undecyl-2,2′-bithiophene), P3UBT. These polymers were spin coated and cast from organic solutions onto the TiO2 films. The dense TiO2 thin films (ca. 30 nm) were deposited on conductive glass via facile spray pyrolysis and sol–gel techniques. After that, cis-(SCN)2 Bis(2,2′ bipyridyl-4,4′-dicarboxylate) ruthenium(II) (a.k.a. Ru N3 dye) was adsorbed on the TiO2 surface, and the polythiophenes were utilized as hole conductors in a simplified solar cell geometry. The results were compared to the control DSSC device made with dense TiO2 and a liquid electrolyte, or 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (a.k.a. Spiro-MeOTAD). The polythiophenes exhibited bandgaps in the range 1.9–2.0 eV, and HOMO energy levels of approximately 5 eV (vs. vacuum). The P3PUT DSSC device exhibited an AM1.5 VOC=0.8 V, a JSC=0.1 mA/cm2, as well as an IPCE=0.5–1%. The AM1.5 short-circuit photocurrents and quantum efficiencies for DSSCs made with the polythiophenes, the Spiro-MeOTAD and the standard liquid electrolyte (I/I3) were found to be identical within the limits of experimental uncertainty and reproducibility. Our results indicate that a solid-state replacement to the liquid junction is not necessarily limited by the fundamental aspect of hole transfer, one of the three fundamental aspects that must be met for an efficient DSSC. Rather than suggest that P3UBT or P4UBT could be used to create efficient “organic solar cells” with the exclusion of the Ru dye, we suggest that transparent thiophene compounds could be attractive candidates for high-surface area solid-state DSSCs, and that the technique presented can be applied to other hole conductors. It can allow a verification of one of the things necessary for the DSSC, so that parallel studies using high-surface area materials can proceed with confidence.  相似文献   

2.
The charge transport and transient absorption properties of K27 dye-sensitized solar cell have been investigated. The current–voltage (IV) characteristics of the solar cell were analyzed by the thermionic emission theory. The ideality factor, barrier height and series resistance values of the solar cell were determined. The ideality factor higher than unity indicated the presence of non-ideal behavior in current–voltage characteristics at lower voltages. At the higher voltages, the charge transport mechanism for the solar cell is controlled by a space-charge limited current (SCLC) with an exponential distribution of traps. The built potential values are determined from capacitance–voltage plot and were found to be 0.14 and 0.58 V, respectively. The transient absorption data of K27 DSSC device suggest that the fast and slow phases are taking place. While the fast phase corresponds to regeneration of the dye cation by the iodide redox couple, the slow phase corresponds to the decay of long-lived I2/ TiO2 electron absorption. The best conversion efficiency for K27 DSSC was found to be 0.317% under 100 mW/cm2 (FF=0.584, Voc=480 mV, Isc=1.131 mA). The photocurrent results indicate that the photogeneration of charge carriers is a monophotonic process.  相似文献   

3.
Dye-sensitized solar cell is fabricated using Rose Bengal dye (RB) for sensitization of nanocrystalline TiO2 and that imparts extension in spectral response towards visible region by modifying the semiconductor surface. Further, the photoresponse of the cell was evaluated by analyzing its JV and impedance characteristics under illumination with metal halide light source of 400 W with an incident light of 73 mW/cm2. Various photovoltaic parameters like Jsc, Voc, FF were evaluated and found to be 3.22 mA, 890 mV, 0.53, respectively, resulting conversion efficiency (η) of 2.09%. Impedance analysis of the cell was carried out to investigate the internal resistance of the cell by recording Cole–Cole plots in between real and imaginary impedance in dark and with illumination under variable biasing, i.e. from 0 to 3 V.  相似文献   

4.
A simple spray method for the preparation of pyrite (FeS2) thin films has been studied using FeSO4 and (NH4)2Sx as precursors for Fe and S, respectively. Aqueous solutions of these precursors are sprayed alternately onto a substrate heated up to 120°C. Although Fe–S compounds including pyrite are formed on the substrate by the spraying, sulfurization of deposited films is needed to convert other phases such as FeS or marcasite into pyrite. A single-phase pyrite film is obtained after the sulfurization in a H2S atmosphere at around 500°C for 30 min. All pyrite films prepared show p-type conduction. They have a carrier concentration (p) in the range 1016–1020 cm−3 and a Hall mobility (μH) in the range 200–1 cm2/V s. The best electrical properties (p=7×1016 cm−3, μH=210 cm2/V s) for a pyrite film prepared here show the excellence of this method. The use of a lower concentration FeSO4 solution is found to enhance grain growth of pyrite crystals and also to improve electrical properties of pyrite films.  相似文献   

5.
The optimization of solar energy conversion efficiency of dye-sensitized solar cells (DSSCs) was investigated by the tuning of TiO2 photoelectrode's surface morphology. Double-layered TiO2 photoelectrodes with four different structures were designed by the coating of TiO2 suspension, incorporated with low and high molecular weight poly(ethylene glycol) as a binder. Among these four systems, P2P1, where P1 and P2 correspond to the molecular weight of 20,000 and 200,000, respectively, showed the highest efficiency under the conditions of identical film thickness and constant irradiation. This can be explained by the larger pore size and higher surface area of P2P1 TiO2 electrode than the other materials as revealed by scanning electron microscopic (SEM) and Brunauer–Emmett–Teller (BET) analyses. Electrochemical Impedance Spectroscopy (EIS) analysis shows that P2P1 formulation displayed a smaller resistance than the others at the TiO2/electrolyte interface. The best efficiency (η) of 9.04% with the short-circuit photocurrent density (Jsc) and open-circuit voltage (Voc) of 18.9 mA/cm2 and 0.74 V, respectively, was obtained for a solar cell by introducing the light-scattering particles to the TiO2 nanoparticles matrix coated on FTO electrode having the sheet resistivity of 8 Ω/sq.  相似文献   

6.
A solid-state dye-sensitized solar cell comprising dye mixtures of [Ru(2,2-bpy-4,4′-dicarboxylic acid)(NCS)2] and [Ru(4,4′,4″-tricarboxy-2,2;6,2″-terpy)(NCS)3] on TiO2 thin film was fabricated. The different optical properties of dyes results in increased photocurrent and incident photon to photocurrent efficiency (IPCE). The multiple dye system showed the short circuit current (Isc) of 10.2 mA/cm2 and a cell efficiency (η) of 2.8 while broadening the spectral sensitivity of the cell. When a single dye is used, Isc of 6 and 5 mA/cm2 and cell efficiency of 1.7 and 1.2 were observed for [Ru(4,4-bis(carboxy)-bpy)2(NCS)2] (dye 1) and [Ru(2,2′,2″-(COOH)3-terpy)(NCS)3] (dye 2), respectively. Additionally, the resulting IPCE for the solar cell consisting of dye mixture was 50% at wide wavelength range from 530 to 650 nm while for the dye 1, 32% IPCE was observed at 535 nm while for the dye 2, highest IPCE value observed was 20% at 620 nm.  相似文献   

7.
Conductive polymer precursors, including carboxylic acid, cyano groups, amino groups, 5,2′:5′,2″-terthiophene-3′-carboxylic acid (TTCA), 3′-cyano-5,2′:5′,2″-terthiophene (CTT), and 3′,4′-diamino-2,2′:5′,2″-terthiophene (DATT) are synthesized. Electrochemically polymerized films of the precursors on a nanocrystalline TiO2 layer are examined as photo sensitizers, and the cell performance is compared. The photovoltaic cells are assembled with a polymer-coated TiO2 layer treated with TiCl4 as an anode and a Pt layer as a cathode in a propionitrile solution containing an iodide ion-based redox electrolyte. The charge-transfer processes of polymer-dyed cells are studied using impedance spectroscopy. The polymer dyes on the TiO2 surfaces are characterized by scanning electron microscope (SEM), atomic force microscope (AFM), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). XPS results show that the conducting polymer dye, bearing a carboxylic acid group, is more strongly bound to the TiO2 layer in comparison with other groups. Various experimental parameters affecting the cell efficiency are optimized, including the scan rate, number of potential cycles, and terthiophene monomer concentration. Of these polymers, the best cell efficiency is attained for poly-TTCA containing a carboxylic acid group. The optimized cell with the poly-TTCA dye shows a short-circuit current of 6.78 mA cm−2, an open-circuit voltage of 0.54 V, and a fill factor of 63.6. An energy conversion efficiency of 2.32% is obtained with a cell area of 0.24 cm2 under an air mass 1.5 solar simulated light irradiation of 100 mW cm−2.  相似文献   

8.
In this research, to optimize the surface of the photoanode, two different types of surface coatings were used and their effects on the photovoltaic parameters were investigated. Also, to compare the two different electrolytic systems based on liquid and gel‐state electrolyte, the novel magnetic core‐shell nanocellulose/titanium chloride (Fe3O4@)NCs/TiCl) nanocomposite was introduced into a polymeric system as a nanofiller to decrease the crystallinity of the polymer and enhance the diffusion of triiodide ions in quasisolid‐state dye‐sensitized solar cells (QS‐DSSCs). For this purpose, Fe3O4@)NCs/TiCl was synthesized by coprecipitation of Fe3+ and Fe2+ ions in the presence of nanocellulose and then used as magnetic support for bonding TiCl4 to prepare QS‐DSSCs. Containing a 10.0 wt% magnetic nanocomposite, it displayed a higher apparent diffusion coefficient (Dapp) for I3? ions (4.10 × 10?6 cm2/s) than the gel polymeric electrolyte (GPE) did (1.35 × 10?6 cm2/s). GPEs were characterized using various techniques including current density‐voltage curves, AC impedance measurements, and linear sweep voltammetry (LSV). The photovoltaic values for the short‐circuit current density (Jsc), open‐circuit voltage (VOC), and fill factor (FF) and the energy conversion efficiency (η) of the novel Fe3O4@NCs/TiCl nanocomposite–based QS‐DSSCs were 14.90 mA cm?2, 0.757 V, 64%, and 7.22%, respectively.  相似文献   

9.
Novel iminocoumarin dyes (2a-c and 3a-c) having carboxyl and hydroxyl anchoring groups onto the dyes skeletons have been designed and synthesized for the application of dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). The photophysical and electrochemical studies showed that these iminocoumarin dyes are suitable as light harvesting sensitizers in DSSC application. The dyes having carboxyl and hydroxyl anchoring groups (2a-c) showed better efficiency when compared to the dyes having carboxyl group (3a-c) alone. The cell consisted of dye 2a generated the highest solar-to-electricity conversion efficiency (η) of 0.767% (open circuit voltage (Voc) = 0.491 V, short circuit photocurrent density (Jsc) = 2.461 mA cm−2, fill factor (ff) = 0.635) under simulated AM 1.5 irradiation (1000 W m−2) with a total semiconductor area of 0.25 cm2. The corresponding incident photon-to-current conversion efficiency (IPCE) of the above cell was 21.38%. The overall low efficiency of the dyes is ascribed to the lack of light harvesting ability at longer wavelength region.  相似文献   

10.
For the first time, the application of a molten salt, triethylamine hydroiodide (THI), as a supporting electrolyte was investigated for the dye-sensitized solar cells (DSSCs). Titanium dioxide (TiO2) electrode was modified by incorporation of high- and low-molecular weight poly(ethylene glycol) along with TiO2 nanoparticles of two different sizes (300 nm (30 wt%) and 20 nm (70 wt%)). The highest apparent diffusion coefficient (D) of 8.12×10−6 cm2 s−1 was obtained for I (0.5 M of THI) from linear sweep voltammetry (LSV). Short-circuit current density (Jsc) increases with the concentration of THI whereas open-circuit potential (Voc) remains the same. Optimum Jsc (19.28 mA cm−2) and Voc (0.7 V) with a highest conversion efficiency (η) of 8.45% were obtained for the DSSC containing 0.5 M of THI/0.05 M I2/0.5 M TBP in CH3CN. It is also observed that the Jsc and η of the DSSC mainly relates with the D values of I and charge-transfer resistances such as Rct1 and Rct2 operating along Pt/TiO2 electrolyte interface, obtained from LSV and electrochemical impedance spectroscopy (EIS). For comparison, tetraethylammonium iodide (TEAI) and LiI were also selected as supporting electrolytes. Though both the THI and TEAI have similar structures, replacement of one methyl group by hydrogen improves the efficiency of the DSSC containing the former electrolyte. Further, the DSSC containing THI exhibits higher Jsc and η than LiI (7.70%), from which it is concluded that THI may be used as an efficient and alternative candidate to replace LiI in the current research of DSSCs.  相似文献   

11.
The photoelectric behavior of a black dye, tris (isothiocyanato)-[N-(2,2′:6′,2″-terpyridine-4′-(4-carboxylic acid) phenyl)] ruthenium (II) complex, was examined under different conditions. The dye was adsorbed on nanocrystalline TiO2 surface strongly and generated incident monochromatic photon-to-current conversion efficiency (IPCE) of about 90% at maximum absorption wavelength and greater than 20% in the near-IR region. A sandwich-type solar cell fabricated by this dye-sensitized nanocrystalline TiO2 film generated 6.1 mAcm−2 of short-circuit photocurrent, 0.58 V of open-circuit photovoltage and 2.9% of overall yield under irradiation of white light (78.0 mWcm−2) from a Xe lamp. Since the title dye shows better photoresponse than the N3 dye in the near-IR region, it would be a promising panchromatic sensitizer after optimization.  相似文献   

12.
Dye-sensitized solar cells based on nanoporous oxide semiconductor thin films such as TiO2, Nb2O5, ZnO, SnO2, and In2O3 with mercurochrome as the sensitizer were investigated. Photovoltaic performance of the solar cell depended remarkably on the semiconductor materials. Mercurochrome can convert visible light in the range of 400–600 nm to electrons. A high incident photon-to-current efficiency (IPCE), 69%, was obtained at 510 nm for a mercurochrome-sensitized ZnO solar cell with an I/I3 redox electrolyte. The solar energy conversion efficiency under AM1.5 (99 mW cm−2) reached 2.5% with a short-circuit photocurrent density (Jsc) of 7.44 mA cm−2, a open-circuit photovoltage (Voc) of 0.52 V, and a fill factor (ff) of 0.64. The Jsc for the cell increased with increasing thickness of semiconductor thin films due to increasing amount of dye, while the Voc decreased due to increasing of loss of injected electrons due to recombination and the rate constant for reverse reaction. Dependence of photovoltaic performance of mercurochrome-sensitized solar cells on semiconductor particles, light intensity, and irradiation time were also investigated. High performance of mercurochrome-sensitized ZnO solar cells indicate that the combination of dye and semiconductor is very important for highly efficient dye-sensitized solar cells and mercurochrome is one of the best sensitizers for nanoporous ZnO photoelectrode. In addition, a possibility of organic dye-sensitized oxide semiconductor solar cells has been proposed as well as one using metal complexes.  相似文献   

13.
We have fabricated solid-state, dye-sensitized nanocrystalline TiO2 solar cells (DSSC) based on perylene derivative dye, N,N′-bis-2-(1-hydoxy-4-methylpentyl)-3,4,9,10-perylene bis (dicarboximide) (HMPER) with two different polythiophenes as hole conductors; i.e. poly (3-octyl thiophene) (P3OT) and poly (3-hexyl thiophene) (P3HT), respectively. HMPER adsorbs strongly to the surface of nanocrystalline TiO2 and inject electrons into TiO2 conduction band upon absorption of light. Polythiophene derivatives are well-known materials as hole conductors in solid-state dye-sensitized solar cells. We obtained quite similar results with P3OT and P3HT yielding a short-circuit current density of around 80 μA/cm2 and open-circuit voltage of around 0.7 V at 80 mW/cm2 AM 1.5 light intensity. The results are compared with Ru-535 TBA-sensitized nc-TiO2 cells prepared by using the same polythiophene derivatives.  相似文献   

14.
Abstract

The past decade has witnessed increasing attention in the nanocrystalline TiO2 solar cells (TSSCs). In this work, we have studied a novel TiO2/PCBM/PPy solar cell based on blends of the semiconducting copolymer polypyrrole (PPy) and [6,6]-phenyl C61 butyric acid methyl (PCBM) coated titanium dioxide (TiO2) nanocrystal film to substitute the I3?/I? redox electrolyte and the dye using in DSSCs. The research by incident photon to current efficiency spectra shows that the TiO2 films had a stronger absorption in 300–500 nm light range. The performance of the resulting photovoltaic devices was investigated, and the effects of the PCBM/PPy ratio by photocurrent–voltage characteristics were researched. By the optimised PCBM/PPy ratio was 3∶1, The TSSC exhibited a short circuit current of 1·28 mA cm?2, an open circuit voltage of 0·788 V, a fill factor of 0·654 and a light to electric energy conversion efficiency of 0·622% under a simulated solar light irradiation of 100 mW cm?2.  相似文献   

15.
New designs of multi-layer graded band gap solar cell structures were experimentally tested using well-understood AlxGa(1−x)As materials grown by the MOVPE technique. Laboratory scale devices (0.5 mm diameter) were processed and measured for their performance as solar cells. Both Voc (1110 mV) and fill factors (83%) for the best devices have shown drastic improvements over existing cells and the short-circuit current densities measured are in the range (10–20) mA cm−2 .  相似文献   

16.
We have investigated the influence of electrolyte composition on the photovoltaic performance of a dye-sensitized nanocrystalline TiO2 solar cell (DSSC) based on a Ru(II) terpyridyl complex photosensitizer (the black dye). We have also spectroscopically investigated the interaction between the electrolyte components and the adsorbed dye. The absorption peaks attributed to the metal-to-ligand charge transfer transitions of the black dye in solution and adsorbed on a TiO2 film, were red-shifted in the presence of Li cations, which led to an expansion of the spectral response of the solar cell toward the near-IR region. The photovoltaic performance of the DSSC based on the black dye depended remarkably on the electrolyte composition. We developed a novel efficient organic liquid electrolyte containing an imidazolium iodide such as 1,2-dimethyl-3-n-propylimidazolium iodide or 1-ethyl-3-methylimidazolium iodide (EMImI) for a DSSC based on the black dye. A high solar energy-to-electricity conversion efficiency of 9.2% (Jsc=19.0 mA cm−2, Voc=0.67 V, and FF=0.72) was attained under AM 1.5 irradiation (100 mW cm−2) using a novel electrolyte consisting of 1.5 M EMImI, 0.05 M iodine, and acetonitrile as a solvent with an antireflection film.  相似文献   

17.
Various kinds of cyanine and merocyanine organic dyes having short anchoring groups as sensitizers on nanocrystalline TiO2 electrodes were investigated to promote the short-circuit photocurrent (Jsc) and the solar light-to-power conversion efficiency (ηsun). The Jsc and ηsun improved when the three different three dyes (yellow and red cyanine dyes, and blue squarylium cyanine dye) were adsorbed simultaneously on a TiO2 electrode, as compared with the Jsc and ηsun of the TiO2 electrodes adsorbed by each single dye. The maximum ηsun was 3.1% (AM-1.5, 100 mW/cm2). The Jsc and ηsun were influenced by the solvents for the dye adsorption on the TiO2 electrode, and the efficiencies were improved by the addition of some cholic acids into the dye solution for adsorption. The electron transfer and/or the energy transfer from the red cyanine dye to the blue cyanine dye was observed on a SiO2 film using emission spectroscopy, suggesting a strong interaction between two dyes. The J-like aggregates of the blue cyanine dyes hardly showed sensitization efficiency.  相似文献   

18.
We have designed tripyridine-thiolato (4,4,4-tricarboxy-2,2:6,2-terpyridine)ruthenium(II) [complex 1], a novel efficient sensitizing dye for dye sensitized TiO2 solar cells, based on the DFT MO calculations with PBE0 functional. Complex 1 is a modified BD (black dye: trithiocyanato (4,4,4-tricarboxy-2,2:6,2-terpyridine)ruthenium(II) complex) molecule where NCS ligands of BD are replaced by C5H4NS ligands. Molecular and electronic structures of complex 1 have been theoretically characterized. Complex 1 is expected to have the following two advantages over BD, in addition to the advantage of high electron transfer rate from the photoexcited dye to TiO2 realized in BD: (1) higher electron transfer rate from redox systems to oxidized dyes; (2) higher absorption efficiency to solar spectrum. We propose complex 1 as a novel efficient sensitizing dye which provides the higher efficiency than does BD for dye sensitized solar cells.  相似文献   

19.
We have studied the influence of the spacer alkyl chain length of perylenemonoimide (PMI) dyes on the device performance in dye-sensitized solar cells (DSSCs). We observed that the dyes with longer and brunched alkyl chains exhibit higher efficiencies in DSSCs. In line with these statements we now report the highest efficiency obtained under standard conditions for a perylene imide derivative with PMI-DA1 that performs 300 mV open circuit voltage, 9.79 mA/cm2 short-circuit current and 1.61% overall conversion efficiency.  相似文献   

20.
The n-CdZn(S1−xSex) and p-CuIn(S1−xSex)2 thin films have been grown by the solution growth technique (SGT) on glass substrates. Also the heterojunction (p–n) based on n-CdZn (S1−xSex)2 and p-CuIn (S1−xSex)2 thin films fabricated by same technique. The n-CdZn(S1−xSex)2 thin film has been used as a window material which reduced the lattice mismatch problem at the junction with CuIn (S1−xSex)2 thin film as an absorber layer for stable solar cell preparation. Elemental analysis of the n-CdZn (S1−xSex)2 and p-CuIn(S1−xSex)2 thin films was confirmed by energy-dispersive analysis of X-ray (EDAX). The structural and optical properties were changed with respect to composition ‘x’ values. The best results of these parameters were obtained at x=0.5 composition. The uniform morphology of each film as well as the continuous smooth thickness deposition onto the glass substrates was confirmed by SEM study. The optical band gaps were determined from transmittance spectra in the range of 350–1000 nm. These values are 1.22 and 2.39 eV for CuIn(S0.5Se0.5)2 and CdZn(S0.5Se0.5)2 thin films, respectively. JV characteristic was measured for the n-CdZn(S1−xSex)2/p-CuIn(S1−xSex)2 heterojunction thin films under light illumination. The device parameters Voc=474.4 mV, Jsc=13.21 mA/cm2, FF=47.8% and η=3.5% under an illumination of 85 mW/cm2 on a cell active area of 1 cm2 have been calculated for solar cell fabrication. The JV characteristic of the device under dark condition was also studied and the ideality factor was calculated which is equal to 1.9 for n-CdZn(S0.5Se0.5)2/p-CuIn(S0.5Se0.5)2 heterojunction thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号