首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
The hot working behavior of the nickel-base superalloy IN 625 produced by hot extrusion of a powder metallurgy (P/M) compact has been studied by compression testing in the temperature range 900 °C to 1200 °C and true strain rate range 0.001 to 100 s−1. At strain rates less than about 0.1 s−1, the stress-strain curves exhibited near steady-state behavior, while at higher strain rates, the flow stress reached a peak before flow softening occurred. The processing maps developed on the basis of the temperature and strain rate and strain dependence of the flow stress exhibited three domains. (1) The first domain occurs at lower strain rates (<0.01 s−1) and temperatures higher than about 1050 °C. The peak efficiency and the temperature at which it occurs have increased with strain. The microstructure of the specimen deformed in this domain exhibited extensive wedge cracking. (2) The second domain occurs in the intermediate range of strain rates (0.01 to 0.1 s−1) and temperatures lower than 1050 °C, and in this domain, microstructural observations indicated dynamic recrystallization (DRX) of γ containing δ precipitates and carbide particles resulting in a fine-grained structure. (3) The third domain occurs at higher strain rates (> 10 s−1) and tempe ratures above 1050 °C, with a peak efficiency of about 42 pct occurring at 1150 °C and 100 s−1. Microstructural observations in this domain revealed features such as irregular grain boundaries and grain interiors nearly free from annealing twins, which are typical of DRX of homogeneous γ phase. The instability map revealed that flow instability occurs at strain rates above 1 s−1 and temperatures below 1050 °C, and this is manifested as intense adiabatic shear bands. These results suggest that bulk metal working of this material may be carried out in the high strain rate domain where DRX of homogeneous γ occurs. On the other hand, for achieving a fine-grained product, finishing operations may be done in the intermediate strain rate domain. The wedge cracking domain and the regime of instability must be totally avoided for achieving defectfree products.  相似文献   

2.
The hot working behavior of 304L stainless steel is characterized using processing maps developed on the basis of the Dynamic Materials Model and hot compression data in the tem- perature range of 700 °C to 1200 °C and strain-rate range of 0.001 to 100 s♪-1. The material exhibits a dynamic recrystallization (DRX) domain in the temperature range of 1000 °C to 1200 °C and strain-rate range of 0.01 to 5 s-1. Optimum hot workability occurs at 1150 °C and 0.1 s-1, which corresponds to a peak efficiency of 33 pct in the DRX domain. Finer grain sizes are obtained at the lower end of the DRX domain (1000 °C and 0.1 s-1). The material exhibits a dynamic recovery domain in the temperature range of 750 °C to 950 °C and at 0.001 s"1. Flow instabilities occur in the entire region above the dynamic recovery and recrystallization domains. Flow localization occurs in the regions of instability at temperatures lower than 1000 °C, and ferrite formation is responsible for the instability at higher temperatures.  相似文献   

3.
The hot deformation behavior of aluminum of different purities has been studied in the temperature range of 250 °C to 600 °C and strain-rate range of 10 3 to 102 s’1. On the basis of the flow stress data, the strain-rate sensitivity (m) of the material is evaluated and used for establishing power dissipation maps following the Dynamic Materials Model. These maps depict the variation of the efficiency of power dissipation [η = 2m/(m +1)] with temperature and strain rate. A domain of dynamic recrystallization (DRX) could be identified in these maps. While the strain rate at which the efficiency peak occurred in this domain is 10-3 s−1 the DRX temperature is purity dependent and is 375 °C for 99.999 pct Al, 450 °C for 99.995 pct Al, 550 °C for 99.94 pct Al, and 600 °C for 99.5 pct Al. The maximum efficiency of power dissipation for DRX in aluminum is about 55 pct. The sigmoidal increase of grain size with temperature in the DRX domain and the decrease in the DRX temperature with increase in the purity of aluminum are very similar to that observed in static recrystallization, although DRX occurred at much higher temperatures.  相似文献   

4.
The hot deformation behavior of hot isostatically pressed (HIP) NIMONIC AP-1 superalloy is characterized using processing maps in the temperature range 950 °C to 1200 °C and strain rate range 0.001 to 100 s•1. The dynamic materials model has been used for developing the pro-cessing maps which show the variation of the efficiency of power dissipation given by [2m/ (m + 1)] with temperature and strain rate, withm being the strain rate sensitivity of flow stress. The processing map revealed a domain of dynamic recrystallization with a peak efficiency of 40 pct at 1125 °C and 0.3 s•1, and these are the optimum parameters for hot working. The microstructure developed under these conditions is free from prior particle boundary (PPB) de-fects, cracks, or localized shear bands. At 100 s•1 and 1200 °C, the material exhibits inter-crystalline cracking, while at 0.001 s•1, the material shows wedge cracks at 1200 °C and PPB cracking at 1000 °C. Also at strain rates higher than 10 s•1, adiabatic shear bands occur; the limiting conditions for this flow instability are accurately predicted by a continuum criterion based on the principles of irreversible thermodynamics of large plastic flow.  相似文献   

5.
The hot deformation behaviors of β brass in the temperature range of 550°C to 800°C and α-β brass in the temperature range of 450°C to 800°C have been characterized in the strain rate range of 0.001 to 100 s−1 using processing maps developed on the basis of the Dynamic Materials Model. The map for β brass revealed a domain of superplasticity in the entire temperature range and at strain rates lower than 1 s−1, with a maximum efficiency of power dissipation of about 68 pct. The temperature variation of the efficiency of power dissipation in the domain is similar to that of the diffusion coefficient for zinc in β brass, confirming that the diffusion-accommodated flow controls the superplasticity. The material undergoes microstructural instability in the form of adiabatic shear bands and strain markings at temperatures lower than 700°C and at strain rates higher than 10 s−1. The map for α-β brass revealed a wide domain for processing in the temperature range of 550°C to 800°C and at strain rates lower than 1 s−1, with a maximum efficiency of 54 pct occurring at about 750°C and 0.001 s−1. In the domain, the α phase undergoes dynamic recrystallization and controls the hot deformation of the alloy, while the β phase deforms superplastically. At strain rates greater than 1 s−1, α-β brass exhibits microstructural instabilities manifested as flow rotations at lower temperatures and localized shear bands at higher temperatures.  相似文献   

6.
The constitutive flow behavior of sintered cobalt in the temperature range 873 to 1473 K (600 to 1200 °C) and at strain rates from 0.001 to 10 s−1 has been studied using constant true strain rate hot compression tests. On the basis of these data, a processing map has been generated that depicts the variation of strain rate sensitivity with temperature and strain rate. The processing map reveals a domain of dynamic recrystallization (DRX) with an optimum condition of processing at 1273 K (1000 °C) and at 10−3 s−1. When deformed within the domain, the stress-strain curves exhibit a single peak followed by flow softening, leading to steady-state behavior. In addition to this, a recently developed approach based on flow curve analysis is used to study the DRX kinetics, which is found to follow an Avrami-type relation.  相似文献   

7.

Hot compression tests were performed on Inconel 718 and ALLVAC 718 PLUS (718+) at temperatures and strain rates in ranges of 1223 K to 1373 K (950 °C to 1100 °C) and 0.001–1 s−1, respectively. Discontinuous yield behavior was observed in the flow curves of both alloys. For both alloys, the drop in stress at the yield point (yield drop) was maximized at 0.01 to 1 s−1. The alloy 718+ showed larger yield drop than 718 over the studied deformation conditions. The different yield behaviors were attributed to the various chemical compositions. The peak strain for both alloys increased in temperature range of 1223 K to 1273 K (950 to 1000 °C) and strain rates of 0.01 to 1 s−1. This uncommon behavior was ascribed to the change in the mechanism of microstructural evolution from continuous to discontinuous dynamic recrystallization (DRX). The kinetics of DRX was described by the Avrami equation and the exponent was determined at different deformation conditions. The Avrami exponent increased in the middle values of Zener–Hollomon (Z) parameters, i.e., 29.3 < lnZ < 32.9 for 718 and 31.4 < lnZ < 34.5 for 718+. The unusual variation of the Avrami exponent was attributed to the change in the mechanism of DRX.

  相似文献   

8.
The mechanical behavior of a fine-grained duplex γ-TiAl alloy was studied in compression at strain rates ranging from 0.001 to 2000 s−1 and temperatures from −196 °C to 1200 °C. The temperature dependence of the yield and flow stresses is found to depend on the strain rate. At strain rates of 0.001 and 0.1 s−1, the yield stress decreases as the temperature increases, with a plateau between 600 °C and 800 °C. At strain rates of 35 and 2000 s−1, the yield stress exhibits a positive temperature dependence at temperatures above 600 °C; however, postyield flow stresses exhibit a reduced temperature dependency. The work-hardening rate decreases dramatically with temperature at low and high temperatures, with a plateau occurring at intermediate temperatures for all strain rates. The workhardening-rate plateau is seen to extend to higher temperatures as the strain rate increases. The strain-rate sensitivity at strain rates of 0.1 s−1 and greater is lower than 0.1, although it increases slightly with temperature. At 0.001 s−1, the strain-rate sensitivity increases dramatically at high temperatures (equal to 4.5 at 1200 °C). The anomalous (positive) temperature dependence of the yield stress at high strain rates (>1 s−1) and high temperatures (>600 °C) is explained via a dislocation-jog pinning mechanism. The negative temperature dependence of the yield stress at low strain rates (<1 s−1) and high temperatures (>900 °C) is thought to be due to a thermally activated dislocation-jog climb process in the grain interiors and/or deformation and recovery processes at/near grain boundaries. The decreased anomalous temperature dependence of the flow stress at high strain rates and high temperatures is ascribed to dynamic recovery promoted by adiabatic heating.  相似文献   

9.
The onset of recrystallization during the tensile deformation of austenitic iron has been fully documented for the temperature range 950 to 1350°C and strain-rate range 2.8 × 10-5 to 2.3 × 10-2 s-1. Representative materials are zone-refined iron, electrolytic iron, Fe−0.05 C and Fe−5.2 Mn. In general, the strain at the onset of recrystallization decreases with increasing temperature of deformation and decreasing strain rate. The postponement of recrystallization is favored by prior annealing at temperatures above 1200°C and is greatest for the Fe−5.2 Mn alloy; however, for the range of strain rates used, it is difficult to completely eliminate recrystallization. The effects of test conditions on the onset of recrystallization are discussed in terms of a nucleation process that requires a critical amount of stored energy.  相似文献   

10.
11.
The effect of friction stir processing on the superplastic behavior of extruded Al-4Mg-1Zr was examined at 350 °C to 600 °C and at initial strain rates of 1×10−3 to 1 s−1. A combination of a fine grain size of 1.5 μm and high-angle grain boundaries in the friction stir-processed (FSP) alloy led to considerably enhanced superplastic ductility, much-reduced flow stress, and a shift to a higher optimum strain rate and lower optimum temperature. The as-extruded alloy exhibited the highest superplastic ductility of 1015 pct at 580 °C and an initial strain rate of 1×10−2s−1, whereas a maximum elongation of 1280 pct was obtained at 525 °C and an initial strain rate of 1×10−1s−1 for the FSP alloy. The FSP alloy exhibited enhanced superplastic deformation kinetics compared to that predicted by the constitutive relationship for superplasticity in fine-grained aluminum alloys. A possible origin for enhanced superplastic deformation kinetics in the FSP condition is proposed.  相似文献   

12.
The hot working characteristics of 2124 Al alloy matrix composites reinforced with 0, 5, 10, 15, and 20 vol pct of SiC particulate, produced by the powder metallurgy route, were studied using processing maps. The maps based on the dynamic materials model were generated from the flow stress data obtained from hot compression tests, carried out at strain rates ranging from 0.001 to 10 s−1 and temperatures ranging from 300°C to 525°C. All the compositions studied exhibited domains of dynamic recrystallization (DRX) and superplasticity. Flow instabilities were found at higher strain rates and lower temperatures. The composite with 10 vol pct SiC showed a tendency for abnormal grain growth at lower strains, which manifested itself as a shift in the DRX domain to lower strain rates and the disappearance of the superplasticity domain.  相似文献   

13.
The constitutive flow behavior of α brass in the temperature range of 500°C to 850°C and strain rate range of 0.001 to 100 s−1 has been characterized with the help of a power dissipation map generated on the basis of the principles of the Dynamic Materials Model. The map revealed a domain of dynamic recrystallization in the temperature range of 750°C to 850°C and in the strain rate range of 0.001 to 1 s−1, with a maximum efficiency of power dissipation of about 54 pct. The optimum hot working conditions are 850°C and 0.001 s−1, and these match with those generally employed in industrial practice. In the temperature range of 550°C to 750°C and strain rates lower than 0.01 s−1, the efficiency of power dissipation decreases with decreasing strain rate, with its minimum at 650°C. In this regime, solute drag effects similar to dynamic strain aging occur to impair the hot workability. The material undergoes microstructural instabilities at temperatures of 500°C to 650°C and at strain rates of 10 to 100 s−1, as predicted by the continuum instability criterion. The manifestations of the instabilities have been observed to be adiabatic shear bands.  相似文献   

14.
The mechanical behavior of a fine-grained duplex γ-TiAl alloy was studied in compression at strain rates ranging from 0.001 to 2000 s−1 and temperatures from −196°C to 1200°C. The temperature dependence of the yield and flow stresses is found to depend on the strain rate. At strain rates of 0.001 and 0.1 s−1, the yield stress decreases as the temperature increases, with a plateau between 600°C and 800°C. At strain rates of 35 and 2000 s−1, the yield stress exhibits a positive temperature dependence at temperatures above 600°C; however, postyield flow stresses exhibit a reduced temperature dependency. The work-hardening rate decreases dramatically with temperature at low and high temperatures, with a plateau occurring at intermediate temperatures for all strain rates. The work-hardening-rate plateau is seen to extend to higher temperatures as the strain rate increases. The strain-rate sensitivity at strain rates of 0.1 s−1 and greater is lower than 0.1, although it increases slightly with temperature. At 0.001 s−1, the strain-rate sensitivity increases dramatically at high temperatures (equal to 4.5 at 1200°C). The anomalous (positive) temperature dependence of the yield stress at high strain rates (>1 s−1) and high temperatures (>600°C) is explained via a dislocation-jog pinning mechanism. The negative temperature dependence of the yield stress at low strain rates (<1 s−1) and high temperatures (>900°C) is though to be due to a thermally activated dislocation-jog climb process in the grain interiors and/or deformation and recovery processes at/near grain boundaries. The decreased anomalous temperature dependence of the flow stress at high strain rates and high temperatures is ascribed to dynamic recovery promoted by adiabatic heating. Z. JIN, formerly Technical Staff Member, Materials Science and Technology Division, Los Alamos National Laboratory  相似文献   

15.
16.
Elevated temperature tensile and creep-rupture tests were performed on INCONEL alloy MA754 in an as-rolled, fine-grained condition. Tensile tests were performed at 25 °C, 800 °C, 900 °C, and 1000 °C; creep-rupture tests were performed at 800 °C, 900 °C, and 1000 °C. the elevated temperature strength in the fine-grained condition was approximately 25 pct of that the coarse-grained, annealed condition. While good ductility was observed in tensile tests at a nominal strain rate of 1 × 10−3s−1, ductility in creep-rupture tests was very low, with failure elongations less than 5 pct and no reduction in area. Creep deformation appeared to occur primarily by cavity formation and growth.  相似文献   

17.
Cylindrical samples of Waspaloy and Inconel 718 were hot compressed, using a computerized Instron machine. The test program covered strain rates from 10•4 s•1 to 1 s•1 temperatures ranging from 875 °C to 1220 °C and deformations up to strains of 0.7. Interrupted tests were also carried out to determine the nature of the static softening and hardening processes. Dynamic recrystallization, partial or complete, was observed at temperatures above 950 °C. At 950 °C and below, dynamic recovery was the process controlling the deformation. Static softening was found to take place both by recovery and by recrystallization. Yield points were detected in Waspaloy under certain conditions as well as in Inconel 718. For Waspaloy the yield drops occurred in the vicinity of 1100 °C, and a deviation from the normal behavior in the stress-temperature curve was seen in the same temperature range. The mechanism responsible for the occurrence of the yield drops, which in turn is related to the deviation in the σvsT curve, is believed to be short range ordering of the γ’ forming elements. For Inconel 718, elements such as Co, Cr and Fe may be causing short range ordering, but the locking mechanism may also be associated with the precipitation of carbides or other intermetallic phases on the dislocations.  相似文献   

18.
A rapidly solidified and thermomechanically processed fine-grained eutectic NiAl−Cr alloy of the composition Ni33Al33Cr34 (at, pct) exhibits structural superplasticity in the temperature regime from 900°C to 1000°C at strain rates ranging from 10−5 to 10−3 s−1. The material consists of a B2-ordered intermetallic NiAl(Cr) solid solution matrix containing a fine dispersion of bcc chromium. A high strain-rate-sensitivity exponent of m=0.55 was achieved in strain-rate-change tests at strain rates of about 10−4 s−1. Maximum uniform elongations up to 350 pct engineering strain were recorded in superplastic strain to failure tests. Activation energy analysis of superplastic flow was performed in order to establish the diffusion-controlled dislocation accommodation process of grain boundary sliding. An activation energy of Q c=288±15 kJ/mole was determined. This value is comparable with the activation energy of 290 kJ/mole for lattice diffusion of nickel and for 63Ni tracer selfdiffusion in B2-ordered NiAl. The principal deformation mechanism of superplastic flow in this material is grain-boundary sliding accommodated by dislocation climb controlled by lattice diffusion, which is typical for class II solid-solution alloys. Failure in superplastically strained tensile samples of the fine-grained eutectic alloy occurred by cavitation formations along NiAl‖‖Cr interfaces.  相似文献   

19.
The characteristics of hot deformation of INCONEL alloy MA 754 have been studied using processing maps obtained on the basis of flow stress data generated in compression in the temperature range 700 °C to 1150 °C and strain rate range 0.001 to 100 s-1. The map exhibited three domains. (1) A domain of dynamic recovery occurs in the temperature range 800 °C to 1075 °C and strain rate range 0.02 to 2 s-1, with a peak efficiency of 18 pct occurring at 950 °C and 0.1 s-1. Transmission electron microscope (TEM) micrographs revealed stable subgrain structure in this domain with the subgrain size increasing exponentially with an increase in temperature. (2) A domain exhibiting grain boundary cracking occurs at temperatures lower than 800 °C and strain rates lower than 0.01 s-1. (3) A domain exhibiting intense grain boundary cavitation occurs at temperatures higher than 1075 °C. The material did not exhibit a dynamic recrystallization (DRX) domain, unlike other superalloys. At strain rates higher than about 1 s-1 the material exhibits flow instabilities manifesting as kinking of the elongated grains and adiabatic shear bands. The material may be safely worked in the domain of dynamic recovery but can only be statically recrystallized.  相似文献   

20.
High-temperature deformation properties of austenitic Fe-Mn alloys   总被引:1,自引:0,他引:1  
The influence of the Mn content on the hot deformation properties of austenitic binary Fe-Mn alloys containing 1 to 20 mass pct Mn has been investigated for the first time. The influence of the Mn content on the constitutive equations was determined for the temperature range of 950 °C to 1250 °C and the strain rate range of 0.1 to 2 s−1. The activation energy for hot working increased with increasing Mn content, and dynamic recrystallization was observed for all the Fe-Mn binary alloys. The Mn was found to delay dynamic recrystallization. An increase in the Mn content resulted in an increase of both the peak stress σ p and the corresponding peak strain ε p , thus revealing the pronounced influence of Mn on the hot deformation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号