首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the role of protein kinase C (PKC) in the regulation of multidrug resistance and P-glycoprotein (P-gp) phosphorylation, the natural isomer of sphingosine (SPH), D-erythro sphingosine (De SPH), and its three unnatural stereoisomers were synthesized. The SPH isomers showed similar potencies as inhibitors of in vitro PKC activity and phorbol binding, with IC50 values of approximately 50 microM in both assays. Treatment of multidrug-resistant MCF-7ADR cells with SPH stereoisomers increased vinblastine (VLB) accumulation up to 6-fold at 50 microM but did not alter VLB accumulation in drug-sensitive MCF-7 wild-type (WT) cells or accumulation of 5-fluorouracil in either cell line. Phorbol dibutyrate treatment of MCF-7ADR cells increased phosphorylation of P-gp, and this increase was inhibited by prior treatment with SPH stereoisomers. Treatment of MCF-7ADR cells with SPH stereoisomers decreased basal phosphorylation of the P-gp, suggesting inhibition of PKC-mediated phosphorylation of P-gp. Most drugs that are known to reverse multidrug resistance, including several PKC inhibitors, have been shown to directly interact with P-gp and inhibit drug binding. SPH stereoisomers did not inhibit specific binding of [3H] VLB to MCF-7ADR cell membranes or [3H]azidopine photoaffinity labeling of P-gp or alter P-gp ATPase activity. These results suggest that SPH isomers are not substrates of P-gp and suggest that modulation of VLB accumulation by SPH stereoisomers is associated with inhibition of PKC-mediated phosphorylation of P-gp.  相似文献   

2.
The aim of this study was to investigate the link between protein kinase C (PKC) and multidrug resistance (mdr) phenotype. The expression of both was studied in doxorubicin-resistant MCF-7/Adr cells as they reverted to the wild-type phenotype when cultured in the absence of drug. The following parameters were measured in cells 4, 10, 15, 20 and 24 weeks after removal of doxorubicin; (1) sensitivity of the cells towards doxorubicin; (2) levels of P-glycoprotein (P-gp) and MDR1 mRNA; (3) levels and cellular localization of PKC isoenzyme proteins alpha, theta and epsilon; and (4) gene copy number of PKC-alpha and MDR1 genes. Cells lost their resistance gradually with time, so that by week 24 they had almost completely regained the drug sensitivity seen in wild-type MCF-7 cells. P-gp levels measured by Western blot mirrored the change in doxorubicin sensitivity. By week 20, P-gp had decreased to 18% of P-gp protein levels at the outset, and P-gp was not detectable at week 24. Similarly, MDR1 mRNA levels had disappeared by week 24. MCF-7/Adr cells expressed more PKCs-alpha and -theta than wild-type cells and possessed a different cellular localization of PKC-epsilon. The expression and distribution pattern of these PKCs did not change for up to 20 weeks, but reverted back to that seen in wild-type cells by week 24. MDR1 gene amplification remained unchanged until week 20, but then was lost precipitously between weeks 20 and 24. The PKC-alpha gene was not amplified in MCF-7/Adr cells. The results suggest that MCF-7/Adr cells lose MDR1 gene expression and PKC activity in a co-ordinate fashion, consistent with the existence of a mechanistic link between MDR1 and certain PKC isoenzymes.  相似文献   

3.
MCF-7 human breast cancer cells selected in Adriamycin in the presence of verapamil developed a multidrug resistant phenotype, which was characterized by as much as 100,000-fold resistance to mitoxantrone, 667-fold resistance to daunorubicin, and 600-fold resistance to doxorubicin. Immunoblot and PCR analyses demonstrated no increase in MDR-1 or MRP expression in resistant cells, relative to parental cells. This phenotype is similar to one previously described in mitoxantrone-selected cells. The cells, designated MCF-7 AdVp, displayed a slower growth rate without alteration in topoisomerase II alpha level or activity. Increased efflux and reduced accumulation of daunomycin and rhodamine were observed when compared to parental cells. Depletion of ATP resulted in complete abrogation of efflux of both daunomycin and rhodamine. No apparent alterations in subcellular daunorubicin distribution were observed by confocal microscopy. No differences were noted in intracellular pH. Molecular cloning studies using DNA differential display identified increased expression of the alpha subunit of the amiloride-sensitive sodium channel in resistant cells. Quantitative PCR studies demonstrated an eightfold overexpression of the alpha subunit of the Na+ channel in the resistant subline. This channel may be linked to the mechanism of drug resistance in the AdVp cells. The results presented here support the hypothesis that a novel energy-dependent protein is responsible for the efflux in the AdVp cells. Further identification awaits molecular cloning studies.  相似文献   

4.
The efficacy of all chemotherapeutic agents is limited by the occurrence of drug resistance. For etoposide (VP-16), increased expression of MDR-1 or MRP and alterations in topoisomerase IIalpha have been shown to confer tolerance. To further understand resistance to VP-16, three sublines, designated MCF-7-VP17, ZR-75B-VP13, and MDA-MB-231-VP7, were initially isolated as single clones from parental cells by exposure to VP-16. Subsequently, a population of cells from each subline was exposed to 3-fold higher drug concentrations, allowing stable sublines to be established at higher extracellular drug concentrations. Characterization of the resistant sublines demonstrates the adaptation that occurs with advancing drug concentrations during in vitro selections. Reduced topoisomerase II mRNA and protein levels were observed in the initial isolates. This reduction was accompanied by a decrease in topoisomerase II activity and cellular growth rate and was associated with 6-314-fold resistance to topoisomerase II poisons. With advancing resistance, MRP expression increased and VP-16 accumulation decreased. This adaptation allowed for partial restoration of topoisomerase II activity as a result of increased expression (MCF-7-VP17 and ZR-75B-VP13) or hyperphosphorylation (MDA-MB-231-VP7), with a resultant increase in growth rate. In MDA-MB-231-VP7 cells, hyperphosphorylation coincided with increased casein kinase II mRNA and protein levels, suggesting a role for this kinase in the acquired hyperphosphorylation. In this cell line, hyperphosphorylation mediated the increased activity despite a fall in topoisomerase IIalpha protein levels secondary to an acquired 600-bp deletion in one topoisomerase IIalpha allele, which resulted in reduced protein levels. In all three sublines, high levels of resistance were attained as a result of synergism between the reduced topoisomerase IIalpha levels and MRP overexpression. These studies demonstrate how cellular adaptation to increasing drug pressure occurs and how more than one mechanism can contribute to the resistant phenotype when increasing selecting pressure is applied. Reduced expression of topoisomerase II is sufficient to confer substantial resistance early in the selection process, with synergy from MRP overexpression helping to confer high levels of resistance.  相似文献   

5.
The function of P-glycoprotein (Pgp), which confers multidrug resistance by active efflux of drug, is thought to be dependent on phosphorylation. Previous studies have suggested that protein kinase C (PKC) plays an important role in Pgp phosphorylation. We report here the effects of bryostatin 1, a unique PKC activator and inhibitor, on Pgp function in a multidrug-resistant MCF-7 human breast cancer subline which overexpresses PKC-alpha. Bryostatin 1 (100 nM) decreased Pgp phosphorylation after 24 h of treatment. In contrast, it did not affect Pgp function as demonstrated by the accumulation of [3H]vinblastine and rhodamine 123. We compared the effect of bryostatin 1 treatment on PKC-alpha with that of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (200 nM). 12-O-tetradecanoylphorbol-13-acetate caused translocation of PKC-alpha from the cytosol to the cell membrane after a 10-min treatment and its down-regulation after 24 h of treatment. Likewise, bryostatin 1 (100 nM) caused translocation, but only after longer treatment (1 h), and it caused down-regulation of PKC-alpha at 24 h of treatment. Thus, while the MCF-7TH cells overexpress the PKC-alpha isoform, and its down-regulation by bryostatin 1 is associated with decreased Pgp phosphorylation, these alterations do not modulate drug transport. We conclude that, while bryostatin 1 may be useful clinically because of its ability to inhibit PKC, it is not able to reverse Pgp-mediated multidrug resistance.  相似文献   

6.
Multidrug-resistant cancer cells display elevated levels of glucosylceramide (Lavie, Y., Cao, H. T., Volner, A., Lucci, A., Han, T. Y., Geffen, V., Giuliano, A. E., and Cabot, M. C. (1997) J. Biol. Chem. 272, 1682-1687). In this study, we have introduced glucosylceramide synthase (GCS) into wild type MCF-7 breast cancer cells using a retroviral tetracycline-on expression system, and we developed a cell line, MCF-7/GCS. MCF-7/GCS cells expressed an 11-fold higher level of GCS activity compared with the parental cell line. Interestingly, the transfected cells demonstrated strong resistance to adriamycin and to ceramide, whereas both agents were highly cytotoxic to MCF-7 cells. The EC50 values of adriamycin and ceramide were 11-fold (p < 0.0005) and 5-fold (p < 0.005) higher, respectively, in MCF-7/GCS cells compared with MCF-7 cells. Ceramide resistance displayed by MCF-7/GCS cells closely paralleled the activity of expressed GCS with a correlation coefficient of 0.99. In turn, cellular resistance and GCS activity were dependent upon the concentration of the expression mediator doxycycline. Adriamycin resistance in MCF-7/GCS cells was related to the hyperglycosylation of ceramide and was not related to shifts in the levels of either P-glycoprotein or Bcl-2. This work demonstrates that overexpression of GCS, which catalyzes ceramide glycosylation, induces resistance to adriamycin and ceramide in MCF-7 breast cancer cells.  相似文献   

7.
8.
Many multidrug-resistant (MDR) cell lines overexpress the epidermal growth factor receptor (EGFR) as well as P-glycoprotein (P-gp). However, the role of the increased EGFR in P-gp-mediated drug resistance remains unclear. Since recent studies suggest that activation of phospholipase C (PLC) could increase the phosphorylation of P-gp, and activation of the EGFR would also activate PLC, we investigated whether the effect of epidermal growth factor (EGF) on the phosphorylation of P-gp was mediated through PLC. Treatment of the human MDR breast cancer cell line, MCF-7/AdrR, with EGF increased the phosphorylation of P-gp by 20-50%. The increased phosphorylation of P-gp was accompanied by stimulation of PLC activity, as measured by the production of inositol, 1,4,5-trisphosphate and diacylglycerol, products of phosphatidylinositol-4,5-bisphosphate hydrolysis. Treatment of MDR cells with EGF also had detectable effects on P-gp function. For example, following incubation of MCF-7/AdrR cells with ECF, we observed a consistent decrease in total vinblastine (VBL) accumulation. Kinetic analysis revealed this change to be due to an increase in membrane efflux. The latter was measured by the initial uptake velocity, which was inhibited by EGF. VBL uptake measured at 0-320 sec was inhibited by 20-40%, which was associated with a similar increase in VBL efflux. EGF had no effect on drug accumulation, uptake, or efflux in sensitive MCF-7 cells. These data indicate that EGF can modulate the phosphorylation and function of P-gp, and suggest that this effect may be initiated by the activation of PLC.  相似文献   

9.
Clinical chemotherapy of breast carcinomas must be considered insufficient, mainly due to the appearance of drug resistance. The multidrug resistance (MDR) phenotype, either intrinsically occurring or acquired, e.g., against a panel of different antineoplastic drugs, is discussed in relation to several MDR-associated genes such as the MDR-gene mdr1 encoding the P-glycoprotein (PGP), the MRP gene (multidrug resistance protein) encoding an MDR-related protein or the LRP gene encoding the lung resistance protein. Numerous experimental and clinical approaches aiming at reversing resistance require well-characterised in vitro and in vivo models. The aim of our work was to develop multidrug resistant sublines from human xenotransplanted breast carcinomas, in addition to the broadly used line MCF-7 and its multidrug resistant subline MCF-7/AdrR. MDR was induced in vitro with increasing concentrations of Adriablastin (ADR) for several weeks, resulting in a 3.5- to 35-fold increase in IC50 values using the MTT-test. Cell lines were cross-resistant toward another MDR-related drug, vincristine, but remained sensitive to non-MDR-related compounds such as cisplatin and methotrexate. The resistance toward Adriamycin and vincristine was confirmed in vivo by a lack of tumour growth inhibition in the nude mouse system. Gene expression data for the mdr1/PGP, MRP/MRP and LRP/LRP on both the mRNA (RT-PCR) and the protein levels (immunoflow cytometry) demonstrated that induction of mdr1 gene expression was responsible for the acquired MDR phenotype. Rhodamine efflux data, indicated by PGP overexpression, underlined the development of this MDR mechanism in the newly established breast carcinoma lines MT-1/ADR, MT-3/ADR and MaTu/ADR.  相似文献   

10.
Deoxycytidine kinase (dCK) phosphorylates a number of nucleoside analogues that are useful in the treatment of various malignancies. Although the level of dCK activity in malignant cells is thought to correlate with chemotherapeutic response, no direct data are available to support this assumption. We have tested this hypothesis by infecting three tumor cell lines, MCF-7, HT-29, and H1437, with the retroviral vector LNPO containing either dCK or LacZ cDNA and measuring the corresponding sensitivity to nucleoside analogues. DCK activity was increased by 1.7-, 2.3-, and 16-fold in MCF-7, HT-29, and H1437 cells, respectively. Northern and Western blots demonstrated a similar increase in mRNA and protein levels. As a result of dCK expression, MCF-7 cells demonstrated a 2.5-fold increase in drug sensitivity to 1-beta-D-arabinofuranosylcytosine (AraC) and 2-chloro-2'-deoxyadenosine (CdA). HT-29 cells had a 7-fold increase in sensitivity to AraC, CdA, and 2-fluoro-9-beta-D-arabinofuranosyladenine, whereas H1437 cells demonstrated a 20- to 106-fold increase. For all three drugs, there was a linear relationship between dCK activity in clonally derived cell lines and IC50s. These data demonstrate a direct effect of dCK activity on drug sensitivity in cell lines. Because many tumors have relatively low levels of dCK, it is possible that dCK gene transfer will be a useful adjunct to the treatment of these malignancies.  相似文献   

11.
12.
Serine 167 has been identified by radiolabel and amino acid sequencing as the major estrogen-induced phosphorylation site on the human estrogen receptor (hER) from human MCF-7 mammary carcinoma cells. The phosphorylation of the hER on serine 167 was estrogen-dependent, increasing 4-fold upon estradiol treatment of MCF-7 cells and accounted for almost half of the total [32P]phosphate incorporated into the recombinant hER from Sf9 insect cells and the native hER from MCF-7 cells. Casein kinase II was found to phosphorylate the purified recombinant hER on serine 167 in vitro. In addition, estradiol binding enhanced by 2-fold the phosphorylation of the purified recombinant hER by casein kinase II in vitro. Western blot analysis and [32P]phosphate incorporation confirmed the presence of casein kinase II in Sf9 cells. These results demonstrate that the hER is phosphorylated on serine 167 by casein kinase II in a hormone-dependent manner.  相似文献   

13.
14.
15.
The staurosporine analogues CGP 41251, UCN-01 and Ro 31-8220 are specific inhibitors of protein kinase C (PKC). CGP 41251 and UCN-01 exert anti-neoplastic activity against human tumours grown in rodents, and CGP 41251 reverses multidrug resistance. The hypothesis was tested that these agents can induce drug resistance and alter cellular levels of target kinases. Human-derived A549 lung carcinoma cells were exposed for 6 months to CGP 41251, UCN-01 or Ro 31-8220 at gradually increasing concentrations. Cells acquired resistance against these agents, 4.3-fold against CGP 41251 (A549/CGP cells), 4.0-fold against UCN-01 (A549/UCN cells) and 14-fold against Ro 31-8220 (A549/Ro cells). Cells were neither collaterally cross-resistant towards the PKC inhibitors nor resistant against the growth-inhibitory properties of 12-O-tetradecanoylphorbol-13-acetate. However, cross-resistance was observed in A549/CGP cells against staurosporine (13-fold) and in A549/Ro cells against doxorubicin (26-fold). All 3 cell types expressed multidrug resistance-associated protein, and A549/Ro cells expressed P-glycoprotein, as adjudged by Western blot analysis. Phorbol ester-stimulated PKC activity in these cells was decreased by between 57% and 96% compared to wild-type A549 cells. Levels of the PKC isoenzymes alpha and theta in all 3 resistant cell types and of PKC-epsilon in A549/UCN cells were concomitantly reduced. Cells regained drug sensitivity after culture in the absence of drug for 6 (A549/Ro cells), 5 (A549/CGP cells) and 1 (A549/UCN cells) months. Our results suggest the following features of this type of anti-signalling drug: (i) they can induce drug resistance, (ii) they may be potentially useful in combination because of the lack of cross-resistance between them and (iii) they can down-regulate PKC, which may have pharmacological or toxicological consequences.  相似文献   

16.
AIM: To find whether or not the doxorubicin (Dox) cellular pharmacokinetics plays a role in chemosensitizing effect of verapamil (Ver) on drug sensitive cells. METHODS: Cytotoxicity and cellular Dox contents (during accumulation and retention periods) were measured in the absence and presence of verapamil in Swiss-3T3 cells and compared with those in multidrug resistant (MDR) MCF-7Adr cells and drug sensitive MCF-7WT cells. mdr-1 mRNA expression in Swiss-3T3 cells was analyzed. RESULT: Dox cytotoxicity was enhanced 2.0-fold in Swiss-3T3 cells by Ver (3 mumol.L-1) and 3.6-fold in MCF-7Adr cells by Ver (6 mumol.L-1), but not in MCF-7WT cells (Ver 6 mumol.L-1). Cellular accumulation of equi-effective concentrations of Dox increased at 6-h incubation in the presence of Ver in Swiss-3T3 (1.5-fold)i and MCF-7WT cells (2.1-fold) but decreased rapidly in MCF-7Adr cells by 20% to 50% compared to that in the absence of Ver. Cellular retention of Dox decreased after 10-min increase in the presence of Ver in Swiss-3T3 cells compared to that in the absence of Ver, that was similar to that in MCF-7WT cells, while the retention was augmented by Ver in MCF-7Adr cells. Slot blot analysis of RNA revealed no mdr-1 gene expression in Swiss-3T3 cells. CONCLUSION: Changes in cellular accumulation and retention of Dox did not account for the chemosensitizing effect of Ver on Swiss-3T3 cells.  相似文献   

17.
18.
Treatment-induced secondary drug resistance of tumor cells is a major cause of relapsed disease and therapeutic failure in cancer patients. It has been shown that the expression of the multidrug resistance MDR1/P-glycoprotein gene could be induced by short-term in vitro exposure of cells to protein kinase C (PKC) agonists or different chemotherapeutic drugs. We studied whether other genes involved in drug resistance are regulated by similar signaling pathways. Transient (up to 24 h) treatment of HL-60 or K562 leukemia cells with phorbol 12-myristate 13-acetate (TPA) resulted in increased steady-state level of LRP (lung resistance-related protein) mRNA and protein. Among conventional chemotherapeutic drugs tested, only cytarabine (Ara C) induced the LRP mRNA expression though no increase in LRP protein was detected. LRP gene activation was not detectable in either H9 T-cell leukemia or in solid carcinoma cell lines (BT-20, ZR-75-1, and SW 1573). None of the agents influenced the levels of MRP (multidrug resistance-associated protein) mRNA in any cell line tested. In HL-60 cells, the LRP activation by TPA or Ara C was sustained for at least 23 days after withdrawal of inducing agents. bis-Indolylmaleimide I, a potent PKC inhibitor, attenuated TPA-induced LRP activation. In contrast, the inhibitor had no effect on the LRP induction by Ara C. These data indicate that the LRP gene can be activated by different mechanisms, some of which involve PKC.  相似文献   

19.
BACKGROUND: Estramustine previously has been shown to interact with P-glycoprotein and to restore intracellular accumulation of vinblastine and paclitaxel in cells overexpressing this drug transporter. However, the ability of estramustine to potentiate the cytotoxicities of several drugs was less than that expected. To resolve this apparent discordance, the authors examined the effects of serum on the actions of estramustine. METHODS: The cytotoxicities of anticancer drugs with or without estramustine or verapamil toward MCF-7 breast carcinoma cells and a P-glycoprotein-overexpressing subline MCF-7/ADR were determined using the sulforhodamine-binding assay. The extent of intracellular accumulation of [3H]vinblastine and [3H]paclitaxel was determined for each using standard methods, and the binding of radiolabeled drugs to plasma proteins was characterized by equilibrium dialysis. RESULTS: Without serum, the sensitivities of MCF-7/ADR cells to several P-glycoprotein-transported drugs were increased by estramustine and verapamil. Conversely, when the cells were treated with a 10% serum, the cytotoxicities of these drugs were increased by verapamil, but not by estramustine. Without serum, intracellular accumulation of [3H]vinblastine and [3H]paclitaxel by MCF-7/ADR cells was increased markedly by verapamil and estramustine; however, serum suppressed the effects of estramustine much more strongly than those of verapamil. Equilibrium dialysis experiments demonstrated that [3H]estramustine binds to plasma proteins, predominantly albumin, whereas [3H]paclitaxel binds to albumin and alpha 1-acid-glycoprotein, and [3H]vinblastine binds predominantly to alpha 1-acid-glycoprotein. CONCLUSION: Although estramustine can bind to P-glycoprotein, its effectiveness as a reversing agent in vivo likely is limited by binding to plasma proteins.  相似文献   

20.
ZD1694 (Tomudex; TDX) is a quinazoline antifolate that, when polyglutamated, is a potent inhibitor of thymidylate synthase (TS), the enzyme that converts dUMP to dTMP. Continuous exposure of MCF-7 breast and NCI H630 colon cells to TDX, with stepwise increases in TDX up to 2.0 microM, resulted in stably resistant cell lines (MCFTDX and H630TDX) that were highly resistant to TDX. Initial studies revealed 34-fold increase in TS protein levels in MCFTDX and a 52-fold increase in TS levels in H630TDX cell lines. Despite continued exposure of these cells to 2.0 microM TDX, TS protein and TS mRNA expression decreased to parental levels in H630TDX cells, whereas in MCFTDX cells TS mRNA expression and TS protein levels remained elevated. Southern blot analysis revealed a 20-fold TS gene amplification in the MCFTDX cell line. TDX uptake was 2-fold higher in resistant MCFTDX cells than in parental MCF-7 cells, whereas in H630TDX cells TDX uptake was 50-fold less than that observed in parental H630 cells. In contrast, no change in the transport of either leucovorin or methotrexate into H630TDX cells was noted when compared with the H630 parental cells. In H630TDX cells, folylpolyglutamate synthetase (FPGS) activity was 48-fold less compared to parent H630 cells; however, FPGS mRNA expression was similar in both lines. H630TDX cells were also highly resistant to ZD9331, a novel quinazoline TS inhibitor that does not require polyglutamation, suggesting that defective transport by the reduced folate carrier was also an important mechanism of resistance in these cells. In MCFTDX and H630TDX resistant cells, several mechanisms of resistance are apparent: one increased TS expression; the others evolved over time from increased TS expression to decreased FPGS levels and decreased TDX transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号