首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the long-term characteristics of XLPE cables installed in free air and in water, aging tests were conducted under various testing conditions using XLPE cables with both 3.5 mm and 6 mm insulation. From the Weibull plots of lifetime distribution under the voltage stress EL as the minimum breakdown strength, the minimum value of time to breakdown tL under the constant voltage was estimated. The results of accelerated aging tests of XLPE cables installed in free air demonstrated that the V-t characteristics of XLPE cables could not be described by the conventional inverse power law (t ∝ V−n) with a single constant life exponent n. Based on the microscopic observation of a sliced insulation removed from XLPE cables, it was concluded that bow-tie trees with longer tree length observed in cables tested in water were caused by the moisture from outside, whereas the trees in cables tested in free air were caused by the residual moisture originally existing in the insulation. The breakdown strength of the aged cables tested in water increases through cable drying. However, it does not recover to the original values.  相似文献   

2.
This review summarizes research on treeing phenomena, i.e. the formation of electrical trees and water trees, that has been undertaken in Japan for the development of 500 kV XLPE cable. Section 1 presents the results of factors affecting XLPE cable insulation breakdown under commercial ac and lightning impulse voltages. Section 2 verifies the phenomena of electrical tree formation in XLPE cable insulation using block samples and model cables, and gives the results of studies to determine the level electrical field stress initiation for such trees. Section 3 summarizes the results of studies on long-term aging characteristics, which is a particular problem under commercial ac voltages, while Section 4 explains how this research influenced the design of 500 kV XLPE cable insulation. All authors were members of `The investigation committee of fundamental process of treeing degradation' under IEEJ  相似文献   

3.
Dry‐cured and extruded three‐layer (E‐E type) 6.6‐kV cross‐linked polyethylene (XLPE) cables were introduced into electric power systems more than 30 years ago, but they do not experience failures because of water tree degradation. Also, the degradation index of water treeing for these cables has not been established. Therefore, investigating results of residual breakdown voltage and water tree degradation of these cables will help us plan for cable replacement and determine water tree degradation diagnosis scheduling, and will be fundamental data for cable lifetime evaluation. In this study, the authors measured the ac breakdown voltages of dry‐cured and E‐E type 6.6‐kV XLPE cables removed after 18 to 25 years of operation and observed the water trees in their XLPE insulation. As a result, it was observed that breakdown voltages were larger than the maximum operating voltage (6.9 kV) and the ac voltage for the dielectric withstanding test (10.3 kV). Water trees were mainly bow‐tie water trees and their maximum length was approximately 1 mm. Although the number of measured cables was limited, the lifetime of this type of cable was estimated to be approximately 40 years, even experiencing water immersion.  相似文献   

4.
A new insulation diagnostic method for XLPE cables containing water trees is presented. A dc component in the ac charging current of these cables was found to be a significant sign of the existence of water trees. The dc component has good correlations with such insulation characteristics of aged XLPE cables as ac breakdown voltage and dc leakage current. Criteria for insulation diagnosis of 6.6kV XLPE cables have been established. An automatic insulation diagnostic device has been developed. It is now being applied to hot-line XLPF cables in distribution systems of TEPCO (The Tokyo Electric Power Co., Inc.).  相似文献   

5.
This paper reports the results from the condition assessment of 12- and 24-kV cross-linked polyethylene (XPLE) cables using a technique based on dielectric spectroscopy initially developed at KTH in Sweden. The work aims to examine whether the method could detect water tree degradation for the second generation medium voltage (MV) cables with long, but not bridging, water trees. While the overall cable condition was better than expected for second generation XPLE cables, water trees were found in most of the selected cables. The diagnostic method based on the measurement of the dielectric response could only detect water tree degradation in the examined second generation cables when the water trees bridged the insulation wall. Condition assessment above service stress may, in some cases, be required to detect bridging water trees. The results indicate that there is a correlation between the voltage level and the breakdown voltage of the cable. This can be used as a diagnostic criterion for this group of cables.  相似文献   

6.
热老化对交联聚乙烯电缆绝缘中水树的影响研究   总被引:3,自引:2,他引:1  
热老化过程不但会影响交联聚乙烯电缆绝缘的电磁学和物理化学性能,还对绝缘内水树的产生与生长有着一定的影响。通过研究热老化过程对XLPE电缆绝缘中的水树现象的影响,以及在几个有可能的影响因素当中,哪个因素对水树现象的影响最大。实验结果表明,在与XLPE电缆绝缘的热老化有关的各种因素对水树现象的影响中,热氧化对XLPE电缆绝缘表层水树的产生和生长的影响最大。尽管热氧化所引起的缺陷有可能就是XLPE电缆绝缘中水树生长过程中的起始点,但是它在一定程度上抑制着水树的成长,甚至有着"水树延迟效果"的美称。  相似文献   

7.
局部放电 (PD)是检测 XL PE电缆缺陷的一种重要手段 ,缺陷会造成电缆的局部场强的不均匀 ,在施加外部电压后引起局部放电的现象。本文提出 :在 XL PE电缆承受耐压的过程中 ,采用提高场强的方法 ,能更有效地发现 PD缺陷 ,从而降低 XL PE电缆在运行中的击穿事故。  相似文献   

8.
This paper provides data on four commercial tree retardant crosslinked polyethylene (TR-XLPE) and one cross-linked polyethylene (XLPE) insulated 15 kV cables supplied by three manufacturers. The cables have "super-smooth" conductor shields and "extra-clean" insulation and insulation shields. AC and impulse voltage breakdown and selected other characterization data are presented for cables that were aged immersed in room temperature water (15-30/spl deg/C) up to 24 months of a planned 48 months aging program. The five cables have high ac voltage breakdown strength, three of the TR-XLPE cables, actually increased in breakdown strength during aging. The one TR-XLPE cable that had the lowest ac voltage breakdown had vented trees at the insulation shield and high dissipation factor, which the other cables did not have. The impulse voltage breakdown strength of all cables decreased during aging; the cable with the lowest ac voltage breakdown also has the lowest impulse voltage breakdown. The dissimilar performance of the TR-XLPE cables and the excellent performance of the XLPE cable indicates evaluations at longer times are required to differentiate between modern TR-XLPE and XLPE insulated cables.  相似文献   

9.
To evaluate the effect of using siloxane liquid to rejuvenate water tree defects in cross-linked polyethylene(XLPE)cables,we investigated the electrical properties and micro-structures of water-tree aged XLPE cables after siloxane liquid injection treatment.The water-tree aged samples were prepared by performing accelerated aging experiment using water-needle electrodes,and the siloxane liquid is injected into the aged cable through a pressurized injection system.Dielectric loss factors of the samples before and after the rejuvenation were compared.The water trees and the internal filler were observed using scanning electron microscope(SEM).Electrical properties of the reactants are measured.Electric field simulation is conducted to verify the rejuvenation effect by finite element method.The results show that the siloxane liquid diffused into the insulation layer in a short time and reacted with water in the water trees.The electrical properties of the formed organic filler are in accord with that of XLPE.Therefore,the action between siloxane and water can inhibit the growth of water trees and reduce electric field distortion of the water tree areas.As a result,insulation performance of the cable is enhanced.A 70 m long cable was aged and rejuvenated in laboratory and an on-site rejuvenation experiment was conducted,and in both cases the dielectric loss factor and leakage current halved after rejuvenation.  相似文献   

10.
采用硅氧烷修复液修复交联聚乙烯电缆老化试样中的水树,进而分析修复效果及机理。将介质损耗因数为4%~6%,绝缘电阻7 500~10 000 MΩ的短电缆在7.5 kV 450 Hz交流电压下老化至介质损耗因数达到20%左右,绝缘电阻3 500~5 000 MΩ。然后用压力注入式修复装置把修复液注入缆芯对水树缺陷进行修复。以介质损耗因数、绝缘电阻和击穿电压为指标对修复效果进行评判;通过显微镜切片观察修复前后水树微观形态;通过仿真修复前后水树附近电场分布来分析和验证水树的修复机理。实验结果证明,修复液可以充分与电缆水树中的水发生反应生成胶状聚合物填充水树通道;修复后电缆介质损耗因数、绝缘电阻和击穿电压恢复到新电缆水平;改善了绝缘层电场分布;有效地抑制了水树生长。实验表明,该修复液可有效修复电缆中的水树缺陷,提高电缆绝缘水平。  相似文献   

11.
Cables as elements of power distribution system have great influence on its reliable service and overall planning requirements. During last years, crosslinked polyethylene (XLPE) cables have been more and more used in power systems. This paper presents the results of an investigation of changing of (XLPE) cables insulation breakdown stress (AC BDS) due to water absorption. The paper deals with AC BDS of the following kinds of XLPE cable insulations: steam and dry cured with water tree retardant crosslinked polyethylene (TR-XLPE) and non-tree retardant crosslinked polyethylene (XLPE). During tests, the tap water was injected into, (1) conductor with cable ends closed; (2) into cable conductor with ends opened; and (3) into metallic screen with cable ends opened. The presence of water in XLPE cables was subjected to electrical stress and heating. AC BDS tests were performed as a function of aging time and water content in the cable insulation at different aging temperatures. Also, in this investigation, tests with the changing of AC BDS in the radial direction of unaged and aged XLPE cable insulations were carried out.  相似文献   

12.
This paper describes the water tree diagnoses of 6.6-kV class XLPE cables by the dc component method. The dc current component is measured by energizing the cable with ac high voltage, therefore, it would be suitable for on-line diagnoses. The dc component is considered to be caused by the rectifying effect of water trees inside the insulation. In laboratory tests, the dc component showed a good correlation with the degradation. However, almost no correlation was seen in the on-site measurement. The authors found that the cause of this bad correlation is the galvanic effect inside the jacket. This generates the noise current through the grounding circuit when the jacket resistivity is low. Based on this finding, the equivalent circuit of on-site measurement was proposed. Considering the equivalent circuit, this paper proposes nine methods for discriminating the dc component due to water tree from noise current. Also described are the analytical results of each method. Furthermore, the on-site or laboratory tests show that some of them are effective in separating the dc component due to water tree from noise current.  相似文献   

13.
水树对交联聚乙烯电缆运行寿命有害。本文通过在交联聚乙烯绝缘料试片和原尺寸交联聚乙烯电缆上进行的加速水树引发试验,观察研究水树枝的生长特性,比较二种不同交联方法对水树生长的影响。最后探讨了形成水树的可能机理。  相似文献   

14.
The purpose of HV after-laying tests on cable systems on-site is to check the quality of installation. The test on extruded MV cable systems is usually a voltage test. However, in order to enhance the quality of after installation many researchers have proposed performance of diagnosis tests such as detection, location and identification of partial discharges (PD) and tan /spl delta/ measurements. Damped AC voltage (DAC) also called oscillating voltage waves (OVW) is used for PD measurement in after-laying tests of new cables and in diagnostic test of old cables. Continuous AC voltage of very low frequency (VLF) is used for withstand voltage tests as well as for diagnostic tests with PD and tan /spl delta/ measurements. Review on the DAC and VLF tests to detect defects during on-site after-laying tests of extruded MV cable systems is presented. Selectivity of DAC and VLF voltages in after-laying testing depends on different test parameters. PD process depends on type and frequency of the test voltage and hence, the breakdown voltage is different. The withstand voltage of XLPE cable insulation decreases linearly with increasing frequency in log scale. Experimental studies with artificial XLPE cable model indicate that detection of defects with DAC or VLF voltage can be done at a lower voltage than with DC. DAC voltage is sensitive in detecting defects that cause a breakdown due to void discharge, while VLF is sensitive in detecting defects that cause breakdown directly led by inception of electrical trees.  相似文献   

15.
The use of XLPE as the insulation for power cables has grown steadily since it first introduction more than 30 years ago. Today XLPE is rapidly becoming the preferred insulation system for even the highest transmission voltages. This preference is due to the high reliability, low dielectric losses, and low environmental impact that can be achieved with XLPE. The positive effects of high quality insulation materials on improved cable performance have been well known since the start of cable making. The purpose of this paper is to investigate the technical background for the cleanliness levels and to quantify the level of performance required from clean materials. The advantages of clean insulation materials are seen at all voltages. However, this work focuses on the technical basis for the benefits for HV and EHV cables, which typically are designed with a water impervious layer to ensure that the cable remains dry throughout its entire lifetime. The presence of metallic contaminants in MV cable is known to enhance the growth of trees by raising the electric stress level locally. The singular impact of cleanliness on the performance of MV cables is somewhat more complicated as it is influenced both by the cleanliness of the insulation and the ability of the insulation material to resist the growth of water trees.  相似文献   

16.
高温下110kV交联聚乙烯电缆电树枝生长及局部放电特性   总被引:1,自引:1,他引:0  
利用实时显微数字摄像与局部放电连续测量系统,采用典型针-板电极结构,研究了高温下不同外施工频电压作用时110kV级交联聚乙烯(XLPE)电缆绝缘中典型电树枝的形态特征、引发、生长规律及其局部放电特性。实验结果表明,温度对XLPE电缆绝缘中典型电树枝的形态、引发与生长时间具有非常重要的影响。在高温下,不同外施工频电压作用时电树枝的形态呈现出多样性的特点,50°C下典型电树枝形态为枝状、枝-松枝状和丛状,70°C下为枝状,90°C下为滞长型和枝状。高温下电树枝引发时间随外施电压升高而减小,而且在同一外施电压下,电树枝引发时间随温度升高而减小,这是由于在高温下XLPE电缆绝缘中片晶熔化,无定形相增加,介质中自由体积扩大,从而更有利于电树枝引发。研究发现在低电压(9kV)下,电树枝生长过程中由于通道电导率增加而抑制了通道内局部放电的发展,局部放电作用减小,电树枝生长速度减慢,分形维数较高;而11kV以上电压作用时,电树枝在局部放电的连续作用下呈枝状向对面电极快速生长,同时高温下XLPE弹性模量下降,击穿场强降低,局部放电作用加剧,电树枝生长明显加速,电树枝分形维数较低。  相似文献   

17.
Water trees are the most hazardous factor affecting the life of XLPE distribution cables and the major cause of insulation failure. It is well known that insulation failure causes stoppages in electrical service and requires extensive repair work. Up to now, deterioration of cable insulation has been diagnosed mainly by the dc leakage current method. However, application of this method for diagnostic measurements requires interruption of electrical service. Several types of hot‐line diagnostic methods (including the dc component current and dc superposition methods) were developed to detect water tree deterioration. However, these methods have some shortcomings, such as being subject to effects of stray currents and the accuracy of measurements not being sufficiently high. Therefore, we have attempted to develop a new hot‐line diagnostic method. We investigated whether the signals produced by superposition of voltages of various frequencies to the cover layer of energized cables were correlated with deterioration by the water treeing. As a result, we found that a deterioration signal of 1 Hz was observed when we superposed an ac voltage (commercial frequency × 2 +1 Hz) on the cover layer of cable where the water tree had occurred in the insulation. © 1999 Scripta Technica, Electr Eng Jpn, 130(2): 49–58, 2000  相似文献   

18.
This paper presents the results of the study of the influence of moisture on the electrical characteristics of XLPE power cable insulation under various service conditions. Tap water was put into the cable conductors and the ends were properly closed by terminal boxes in the first case, and opened in the second case. The samples of cables were subjected to electric stress and heating. Results from the accelerated aging tests of XLPE cables in these conditions are reported with reference to the changing of the XLPE's electrical characteristics. On the basis of the compared performances of XLPE cables given by this investigation, the lifetime of XLPE cables was estimated in the case of service under these conditions. Results of testing indicate that the combined effects of pressure of water or water vapour, electric field and temperature will greatly accelerate the deterioration of XLPE insulation  相似文献   

19.
Scanning with the micro-PIXE technique was employed to analyze water trees in the XLPE insulation of a field-aged underground HV cable. X-ray spectra of bow tie and vented water trees, the inner and outer semiconductive compounds, and an insulation spot free from any water tree were acquired. Simultaneously, two-dimensional elemental distribution profiles across the water trees were also measured. Various trace element impurities were identified in the analyzed spots and their possible sources are suggested. Differences in elemental distribution profiles in the scanned areas were observed and have been discussed on the basis of the mechanism of incorporation of these elements into the insulation. This study demonstrates the effectiveness of the micro-PIXE facility available in this laboratory in analyzing water trees in underground power cables  相似文献   

20.
This paper describes important aspects of partial discharge (PD) diagnostics of distribution power cables. PD parameter were discussed under consideration of attenuation and dispersive effects of cable characteristics. Field experiences with PD diagnosis on paper insulated cables (PILC) and cables with cross linked polyethylen insulation (XLPE) by energizing with Damped AC Voltage demonstrate relevant demands and the effective outcome for asset management decision support. The main difficulty is to evaluate the risc of PD occurrences on the reliability of the cable system. If an sufficient amount of PD diagnostic data for the cable components is available statistical methods can be used for determing threshold levels and relevant condition indexes for the asset management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号